Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Бесконтактный двигатель постоянного тока
С целью улучшения свойств двигателей постоянного тока были созданы двигатели с бесконтактным коммутатором, называемые бесконтактными двигателями постоянного тока (БДПТ). Отличие БДПТ от коллекторных двигателей традиционной конструкции состоит в том, что у них щеточно-коллекторный узел заменен полупроводниковым коммутатором (инвертором), управляемым сигналами, поступающими с бесконтактного датчика положения ротора. Рабочая обмотка двигателя — обмотка якоря — расположена на сердечнике статора, а постоянный магнит — на роторе. Вал двигателя Д (рис. 30.4, а) механически соединен с датчиком положения ротора (ДПР), сигнал от которого поступает в блок коммутатора (БК). Подключение секций обмотки якоря к источнику постоянного тока происходит через элементы блока коммутатора (БК). Назначение ДПР — выдавать управляющий сигнал в блок коммутатора в соответствии с положением полюсов постоянного магнита относительно секций обмотки якоря. В качестве датчиков положения ротора применяют различные чувствительные бесконтактные элементы с минимальными размерами и потребляемой мощностью и большой кратностью минимального и максимального сигналов, чтобы не вызывать нарушений в работе блока коммутатора. Чувствительные элементы ДПР должны надежно работать при внешних воздействиях (температура, влажность, вибрации и т.п.), на которые рассчитан дви- гатель. Такие свойства присущи ряду чувствительных элементов (датчиков): индуктивных, трансформаторных, магнитодиодов и т. п. Наиболее целесообразно использовать датчики ЭДС Холла (рис. 30.5), представляющие собой тонкую полупроводниковую пластину с нанесенными на ней контактными площадками, к которым припаяны выводы 1—2, подключенные к источнику на- а) Рис. 30.4. Бесконтактный двигатель постоянного тока: а — блок-cема; б — магнитная система пряжения U1, и выводы 3—4, с которых снимают выходной сигнал и U2. Если в цепи 1—2 проходит ток I, а датчик находится в магнитном поле, вектор индукции В которого перпендикулярен плоскости пластины датчика, то в датчике наводится ЭДС и на выводах 3—4 появляется напряжение U2. Рис. 30.5. Датчик ЭДС Холла Значение ЭДС зависит от тока I и магнитной индукции В, а полярность — от направления тока I в цепи 1—2 и направления вектора магнитной индукции В. Рассмотрим работу бесконтактного двигателя постоянного тока, для управления которым применяют датчики Холла и коммутатор, выполненный на транзисторах VTI—VT4 (рис. 30.6). Четыре обмотки фазы двигателя w\—расположены на явно выраженных полюсах шихтованного сердечника якоря (см. рис. 30.4,6). Датчики Холла ДХ1 и ДХ2 установлены в пазах полюсных наконечников двух смежных полюсов. Силовые транзисторы VT1— VT4 работают в релейном (ключевом) режиме (рис. 30.6). Сигнал на открытие транзистора поступает от соответствующего датчика Холла (датчика положения ротора). Питание датчиков Холла (выводы 1—2) осуществляется от источника напряжением U\. Каждая обмотка фазы выполнена из двух катушек, расположенных на противолежащих полюсах сердечника статора и соединенных последовательно (рис. 30.7). Если по какой-либо из обмоток фазы статора проходит ток от начала HI—Н4 к концу К1—К4, то полюсы сердечника статора приобретают полярность соответственно S и N. При положении ротора, показанном на рис. 30.6, в зоне магнитного полюса N находится датчик ДХ1. При этом на выходе датчика появляется сигнал, при котором транзистор VT2 пере- Рис. 30.6. Принципиальная схема БДПТ
Ходит в открытое состояние. В обмотке фазы статора w2 появляется ток г'г, протекающий от Н2 к К2. При этом полюсы статора 2 и 4 приобретают полярность S и N (рис. 30.8, а). В результате взаимодействия магнитных полей статора и ротора (постоянного магнита) появляется электромагнитный момент М, вращающий ротор. После поворота ротора относительно оси полюсов статора 1—3 на некоторый угол а против часовой стрелки датчик ДХ2 окажется в зоне магнитного полюса ротора S, при этом по сигналу с датчика ДХ2 включается транзистор VT3. В фазной катушке wз возникает ток г3 и полюсы 3 и / приобретают полярность S и N. При этом магнитный поток статора Ф создается совместным действием МДС обмоток фаз ш2 и а>3. Вектор этого потока повернут относительно оси 2—4 на угол 45° (рис. 30.8,6). Ротор, продолжая вращение, занимает положение по оси полюсов статора 2—4. При этом датчик ДХ1 попадает в межполюсное пространство ротора, а датчик ДХ2 останется в зоне полюса S ротора. В результате транзистор VT2 закрывается, транзистор VT3 останется открытым и магнитный поток Ф, создаваемый МДС обмотки фазы шз, поворачивается относительно оси полюсов 2—4 еще на 45° (рис. 30.8, в). После того как ось вращаю-щегося ротора пересечет ось полюсов статора 2—4, датчики ДХ1 и ДХ2 окажутся в зоне полюса ротора S, что приведет к включению транзисторов VT3 и VT4. Дальнейшую работу элементов схемы БДПТ (рис. 30.8) до завершения вектором потока Ф одного оборота проследим по табл. 30.1 и рис. 30.8, а—з. HI КЗ Рис. 30.7. Расположение обмоток фаз на полюсах статора БДПТ На рис. 30.9 показано устройство рассмотренного БДПТ. Датчики Холла 3 размещены в специальных пазах полюсных наконечников / сердечника статора. Постоянный магнит 2 не имеет центрального отверстия для посадки на вал, он закладывается в тонкостенную гильзу и закрывается привариваемыми фланцами двух'полуосей. Такая конструкция ротора позволяет избежать выполнения центрального отверстия в постоянном магните, что часто является причиной брака (трещины, сколы и т. п.). Блок коммутатора (БК) расположен на панелях 5, отделен от двигателя перегородкой 4 и закрыт металлическим колпаком 6, через который выведены провода 7 для подключения двигателя в сети постоянного тока. Подобная конструкция применена в БДПТ полезной мощностью от 1 до 120 Вт. Изменение направления вращения (реверс) двигателя осуществляется изменением полярности напряжения Ui в токовой цепи датчиков Холла. Изменение полярности напряжения U на входе двигателя недопустимо, так как при этом прекращается работа блока коммутатора. Коэффициент полезного действия БДПТ по сравнению с коллекторными двигателями постоянного тока выше, что объясняется отсутствием щеточно-коллекторного узла, а значит, электрических потерь в щеточном контакте и механических потерь в коллекторе. Таблица 30.1.
Рис. 30.8. Магнитное поле статора в четырехполюсном БДПТ 1 2 3 4 5 6 Рис. 30.9. Устройство БДПТ К достоинствам БДПТ относятся также высокая надежность и долговечность, что объясняется отсутствием у них щеточно-кол- лекторного узла, т. е. их бесконтактностью. Двигатели могут работать в условиях широкого диапазона температур окружающей среды, в вакууме, в средах с большой влажностью и т. п., где применение коллекторных двигателей недопустимо из-за неработоспособности щеточно-коллекторного узла. Недостаток БДПТ — повышенная стоимость, обусловленная наличием полупроводникового блока коммутатора, чувствительных элементов (датчиков ЭДС Холла) и постоянного магнита.
Date: 2015-09-05; view: 2425; Нарушение авторских прав |