Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Базисы в ЛВП. Их преобразования. Координатное представление векторов





Любой декартовой системе координат на плоскости или в трехмерном пространстве (также и в пространстве другой размерности) может быть сопоставлен базис, состоящий из векторов, каждый из которых направлен вдоль своей координатной оси. Это относится и к прямоугольным декартовым координатам (тогда соответствующий базис называется ортогональным), так и к косоугольным декартовым координатам (которым будет соответствовать неортогональный базис).

Часто удобно выбрать длину (норму) каждого из базисных векторов единичной, такой базис называется нормированным.

Наиболее часто базис выбирают ортогональным и нормированным одновременно, тогда он называется ортонормированным.

В любом векторном пространстве базис можно выбрать различным образом (поменяв направления его векторов или их длины, например).

Декартовы координаты в трехмерном пространстве (левая (на рисунке слева) и правая (справа) декартовы системы координат (левый и правый базисы). Принято по умолчанию использовать правые базисы (это общепринятое соглашение, если только какие-то особые причины не заставляют от него отойти — и тогда это оговаривается явно). Базисом, соответствующим такой системе координат является тройка векторов, каждый из которых направлен вдоль какой-то из осей (изображаются три базисных вектора как правило исходящими из общего начала).

Обозначение векторов базиса может быть в принципе произвольным. Часто используют какую-нибудь букву с индексом (числовым или совпадающим с названием координатной оси), например:

или

— типичные обозначения базиса двумерного пространства (плоскости).

или

— трехмерного пространства. Для трехмерного пространства часто по традиции используется и обозначение

Представление какого-то конкретного (любого) вектора пространства в виде линейной комбинации векторов базиса (суммы базисных векторов числовыми коэффициентами), например

или

или, употребляя знак суммы Σ:

называется разложением этого вектора по этому базису.

Числовые коэффициенты (ax, ay, az) называются коэффициентами разложения, а их набор в целом — представлением (или представителем) вектора в базисе (Разложение вектора по конкретному базису единственно; разложение одного и того же вектора по разным базисам — разное, то есть получается разный набор конкретных чисел, однако в результате при суммировании — как показано выше — дают один и тот же вектор).

Базис Га́меля (англ. Hamel basis) — множество векторов в линейном пространстве, таких, что любой вектор пространства может быть представлен в виде некоторой их конечной линейной комбинации (полнота базиса), и такое представление для любого вектора единственно.

Критерием единственности решения задачи разложения вектора по полной системе векторов является линейная независимость векторов, входящих в полную систему. Линейная независимость означает, что всякая линейная комбинация векторов системы, в которой хотя бы один коэффициент ненулевой, имеет ненулевую сумму. То есть это эквивалентно единственности разложения нулевого вектора.

В случае линейных пространств, когда всякий ненулевой коэффициент обратим, линейная независимость эквивалентна невозможности выразить какой-либо вектор полной системы линейной комбинацией остальных векторов. (В более общей ситуации — модулей над кольцами — эти два свойства неэквивалентны). Невозможность выразить никакой вектор базиса через остальные означает минимальность базиса как полной системы векторов — при удалении любого из них теряется полнота.

В вопросе о существовании базисов основной является следующая лемма (доказательство этой леммы в общем случае неконструктивно и использует аксиому выбора):

Лемма. Пусть S 1 — полная, а S 2 — линейно независимая система векторов. Тогда система S 1 содержит набор векторов, дополняющий S 2 до базиса пространства V.

Следствием этой леммы являются утверждения:

1. Каждое линейное пространство обладает базисом.

2. Базис пространства можно выделить из любой полной системы векторов.

3. Всякую линейно независимую систему можно дополнить до базиса пространства V.

Любые два базиса в линейном пространстве равномощны, так что мощность базиса — величина, независящая от выбора базисных векторов. Она называется размерностью пространства (обозначается dim V). Если линейное пространство имеет конечный базис, его размерность конечна и оно называется конечномерным, в противном случае его размерность бесконечна, и пространство называется бесконечномерным.

Выбранный базис линейного пространства позволяет ввести координатное представление векторов, чем подготавливается использование аналитических методов.

Линейное отображение из одного линейного пространства в другое однозначно определено, если задано на векторах какого-нибудь базиса. Комбинация этого факта с возможностью координатного представления векторов предопределяет применение матриц для изучения линейных отображений векторных пространств (в первую очередь — конечномерных). При этом многие факты из теории матриц получают наглядное представление и приобретают весьма содержательный смысл, когда они выражены на языке линейных пространств. И выбор базиса при этом служит хоть и вспомогательным, но в то же время ключевым средством.

  • Векторы пространства образуют базис тогда и только тогда, когда определитель матрицы, составленной из координатных столбцов этих векторов, не равен 0: .
  • В пространстве всех многочленов над полем один из базисов составляют степенные функции: .
  • Понятие базиса используется в бесконечномерном случае, например вещественные числа образуют линейное пространство над рациональными числами и оно имеет континуальный базис Гамеля и, соответственно, континуальную размерность.

· Преобразования базисов и координат, криволинейные координаты

· Преобразования базисов и координат

· Взаимные, сопряженные базисы

· В дальнейшем речь пойдет о базисах в трехмерном пространстве.

· Определение. Базисы ri, rk называются взаимными или сопряженными, если выполнено условие (ri, rk) = .

· Теорема. Для любого базиса ri существует единственный взаимный базис.

· Из условия r1 r2, r1 r3, поэтому этот вектор надо искать в виде c[r2, r3], из условия (r1, r1) = 1 находится множитель c. Таким образом,

· r1 = [r2, r3]/(r1, r2, r3), r2 = [r3, r1]/(r1, r2, r3), r3 = [r1, r2]/(r1, r2, r3).

· Любой вектор пространства можно разложить по базисам

· x = xk rk = rk xk.

· Координаты xk называются ковариантными координатами, а xk – контравариантными координатами.

· Соглашение 1. В любом выражении, состоящем из некоторого числа сомножителей наличие индекса у двух сомножителей на разных уровнях будет означать суммирование по этому индексу от 1 до 3. Следует придерживать единого порядка написания индексов суммирования. Договоримся при написании этих индексов следовать правилу: «левый внизу, правый вверху».

· Соглашение 2. Иногда, если не возникает путаницы, стрелка над вектором будет опускаться. Тоже самое касается жирности шрифта для обозначения вектора.

· Например, формулы разложений по базисам будут выглядеть следующим образом

· x = xk rk = rk xk.

· Еще один пример: ai cj = ai cj.

· Найдем выражение для ко и контравариантных координат

· x = xi ri = ri xi 

· xi = (x, ri), xi = (x, ri) (1).

· Подставляя выражения для координат в разложения вектора, получим формулы Гиббса

· x = (x, ri) ri = ri (x, ri) (2)

· Подставим выражения x из формул Гиббса (2) в (1)

· xi = (x,rj)(rj,ri) = xj gji (3)

· xi = (rj,ri) (x,rj) = gji xj (4)

· Матрицы gji = (rj,ri), gji = (rj,ri) симметричны и называются метрическими тензорами. Беря в качестве x в формуле (2) вектора rj, rj получим формулы, связывающие векторы взаимных базисов с помощью метрических тензоров

· rj = gji ri

· rj = ri gji.

· Подобные операции носят название операций поднимания и опускания индекса с помощью метрического тензора. Умножим первое равенство на rk второе на rk получим

· = gji gik

· = gik gji.

· Эти равенства показывают, что матрицы метрических тензоров взаимно обратные.

 

 

Date: 2015-09-05; view: 665; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.006 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию