Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Механические системы
Механизмы передачи крутящих моментов широко используются для согласования скоростей рабочих машин или исполнительных механизмов и приводных двигателей. Среди них наибольшее распространение находят зубчатые передачи.
Рис. 5. Пример простейшей кинематической передачи. Динамические процессы, происходящие в большинстве механизмов, неразрывно связаны со свойствами входящих в него механических систем. Особенности получения динамических моделей механизмов с линейными функциями положения и линейными характеристиками упругих звеньев можно рассмотреть на примере механической системы, представленной на рис. 5. Здесь ротор двигателя М и вращающееся исполнительное звено MM связаны передаточным механизмом, состоящим из зубчатых колес 1-4, образующих двухступенчатый редуктор. Пусть передаточное отношение первой пары — При составлении динамической модели механизма будем учитывать крутильные податливости соединительных валов и зубчатых передач. При этом под податливостью понимается величина, обратная жесткости вала с, которая определяется как
где Вычисление податливости валов, связывающих элементы рассматриваемого механизма, подробно описано в литературе по теоретической и прикладной механике. Для вычисления жесткости зубчатой передачи со стальными зубьями можно пользоваться эмпирической зависимостью:
где Обозначим жесткости зубчатых передач 1-2 и 3-4 как
Рассматриваемая система имеет шесть степеней свободы. В качестве обобщенных координат удобно принять углы поворота ротора двигателя и зубчатых колес, приведенные к ротору двигателя. То есть
При этом деформации валов и зубчатых колес, приведенные к валу двигателя, определяются как
Из уравнения Лагранжа следует, что система дифференциальных уравнений, описывающая движение отдельных элементов механизма, может быть представлена в следующем виде
где
Рис. 6. Цепная динамическая модель механизма. На рис. 6 представлена цепная динамическая модель механизма, для которой уравнения вынужденных колебаний, вызываемых активными приложенными силами и моментами инерции, совпадают с движениями, возникающими в системе, представленной выражением (7). На рисунке 6 принято, что величина динамического момента
Таким образом, динамические ошибки, вызванные податливостью звеньев, могут рассматриваться как вынужденные крутильные колебания многомассовой системы вблизи траектории программного движения механизма с абсолютно жесткими звеньями. Система уравнений (7) в операторной форме записывается как
Из системы (8) определяются передаточные функции, связывающие законы изменения обобщенных координат с законами изменения обобщенных сил. Соответствующие им частотные характеристики имеют размерность податливости. Кроме того, возможно получение передаточных функций, связывающих величины обобщенных сил с моментами, прикладываемыми к редуктору со стороны двигателя и исполнительного механизма. Такие характеристики позволяют определить величины динамических моментов, возникающих в различных элементах механизма при разных режимах его работы. Так как основные параметры зубчатых передач определяются исходя из требуемой нагрузочной способности, то в подавляющем большинстве случаев податливости спроектированных зубчатых колес значительно меньше податливостей элементов их соединения с рабочей машиной и приводным двигателем. Поэтому с достаточной степенью точности можно утверждать, что жесткости зубчатых колес общепромышленных механизмов бесконечно велики. Исходя из этого эвристического положения, двухступенчатый редуктор можно рассматривать как трехмассовую систему, параметры которой определяются следующим образом:
Структурная схема такого представления двухступенчатого редуктора показана на рис. 7.
Рис. 7. Структурная схема механизма с двухступенчатым редуктором На рис.8 изображены логарифмическая (а) и амплитудно-фазовая (б) частотные характеристики такого механизма.
Рис. 8. Частотные характеристики двухступенчатого редуктора (а – логарифмическая, б — амплитудно-фазовая)
Date: 2015-09-19; view: 522; Нарушение авторских прав |