Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Описание методов измерений толщины проката





Толщину проката в прокатном производстве измеря­ют двумя методами: прямым и косвенным.

При прямом методе измерения толщина изделия (или отклонение толщины от заданной) с помощью датчиков непосредственно преобразуется в электрическую величи­ну, по которой и судят о толщине проката. При косвен­ном методе измерения о толщине проката судят по тем параметрам процесса прокатки, которые связаны функ­циональной зависимостью с толщиной прокатываемого металла. Наиболее просто толщину прокатываемых лис­тов таким методом можно определить по давлению ме­талла на валки.

Приборы, основанные на прямом методе измерения, можно разделить на контактные и бесконтактные. В при­борах контактного типа измерения производят при со­прикосновении измерительных элементов (или преобра­зователей) с поверхностью проката. При этом объект контроля может перемещаться или быть неподвижным относительно измерительных элементов.

Недостатки приборов контактного типа следующие:

1) они не обеспечивают достаточной точности при большой скорости прокатки (>10 м/сек);

2) толщина измеряется только в одном месте (обыч­но с края листа);

3) при длительной работе наблюдается большой из­нос роликов, в связи с чем требуются частые поверки;

4) не исключена возможность порчи поверхности проката;

5) не учитывается тепловая деформация роликов.

В последнее время для измерения толщины прокаты­ваемых изделий широкое применение нашли бесконтакт­ные приборы, в которых измерение производится без со­прикосновения измерительных элементов с поверхностью изделия.

Бесконтактные толщиномеры по принципу действия можно разделить на следующие группы: 1) приборы, ос­нованные на измерении степени поглощения электромаг­нитного излучения или потока β-частиц; 2) электромаг­нитные; 3) пневматические; 4) ультразвуковые.

Рассмотрим принцип действия данных групп бесконтактных толщиномеров.

1. В приборах, основанных на измерении степени поглощения электромагнитного излучения, используется два вида электромагнитного излучения: рентгеновские и g - лучи.

Рентгеновские лучи возникают в результате торможения электронов, g - лучи являются результатом ядерных превращений, но и те и другие возникают при переходе ядра из возбужденного энергетического состояния в более низкое энергетическое состояние.

Длина волны рентгеновских лучей находится в диапазоне 0,01-5 °А, g - лучей – в диапазоне 0,005-0,01 °А. Этот диапазон считают условным, так как современная техника сверхвысоких напряжений позволяет получать рентгеновские лучи большей "жесткости".

Рентгеновские и g - лучи занимают наиболее коротковолновый участок шкалы электромагнитных волн. Они невидимы для глаза человека и обладают способностью проходить сквозь непрозрачные для видимого света предметы.

Рентгеновские и g - лучи, подобно световым, вызывают свечение (люминесценцию) некоторых веществ, в связи с чем при просвечивании рентгеновскими и g - лучами используют флуоресцирующие экраны; эти лучи могут вызвать ионизацию воздуха и газов, делая их электропроводными, что дает возможность их обнаружить и измерять их интенсивность.

При похождении рентгеновских и g - лучей через вещество их интенсивность постепенно уменьшается асимптотически приближаясь к нулю:

где I и I0 – начальная интенсивность излучения и интенсивность излучения после про хождения слоя поглощающей среды толщиной h см;

m - линейный коэффициент ослабления излучения в данной среде, который зависит от энергии излучения, атомного номера и плотности среды.

В качестве источников рентгеновского излучения применяются рентгеновские трубки и бетатроны, а в качестве источников g - излучения – в основном искусственные радиоактивные изотопы.

Действие приемников излучения основано на различных видах взаимодействия с веществом. В большинстве приемников излучения используется ионизация, создаваемая в них при прохождении заряженных частиц. Сюда относятся ионизационные камеры, газоразрядные счетчики и сцинтилляционные счетчики.

2. Принцип действия электромагнитных измерителей толщины листов и покрытий основан на прямом или косвенном измерении магнитного потока, изменяющегося с изменением толщины листа или покрытия. Для измерения толщины листов и покрытий применяют три основных электромагнитных метода.

Первый метод основан на измерении силы притяжения постоянного магнита или электромагнита к исследуемому объекту. Эта сила определяется при отрыве магнита от объекта. Данный метод получил название магнитного отрывного метода, а приборы, использующие его, называют отрывными толщиномерами. Этот метод применим только для измерения толщины ферромагнитных материалов, а также для измерения немагнитных (или слабо магнитных) покрытий на ферромагнитном основании. В непрерывном технологическом потоке этот метод практически не применяется, поскольку объект находится в контакте с магнитом.

Второй метод измерения толщины листов и покрытий основан на изменении сопротивления магнитной цепи, составленной из листа и сердечника электромагнита. Его используют при измерении толщины листов из ферромагнитных материалов.

Наибольшее распространение получил третий метод - метод вихревых токов (или метод электромагнитной индукции). Этот метод заключается в следующем: испытуемый объект помещают в магнитное поле катушки или в катушки, питаемые переменным током. Переменное магнитное поле индуктирует в испытуемом объекте вихревые токи, которые в свою очередь создают собственное магнитное поле, направленное против основного магнитного поля. В результате взаимодействия этих магнитных полей электрические параметры катушки изменяются. Величина вихревых токов и их магнитного поля при всех прочих равных условиях зависит от свойств испытуемого объекта. Поэтому с изменением этих свойств будут изменяться и электрические параметры катушки.

3. Принцип действия пневматических измерителей толщины листов основан на зависимости между расходом сжатого газа и площадью проходного сечения отверстия. При адиабатическом истечении эта зависимость может быть выражена формулой

где р - давление газа перед измерительной камерой;

рх - давление газа в измерительной камере;

S1 - проходное сечение в измерительную камеру с диаметром d;

S2 - проходное сечение зазора.

При постоянных размерах проходного сечения S1 и величине давления р давление в измерительной камере однозначно определяется размерами проходного зазора S2.

Для поддержания давления воздуха постоянным в пневматических измерительных системах перед измерительной камерой применяют специальные устройства - стабилизаторы, перед которыми обычно устанавливают фильтры для очистки воздуха.

Пневматические датчики обладают большой инерционностью, особенно если для измерения давления рх применяют жидкостные манометры. Кроме того, они могут быть использованы только в свободной атмосфере.

Для измерения толщины проката в основном пользуются дифференциальным методом измерения, при котором положение контролируемого листа не оказывает влияния на точность измерения. В связи с тем, что показания пневматических датчиков зависят от скорости листов, данный метод применяют на станах холодной прокатки главным образом для измерения тонкой ленты при скорости прокатки < 2 м/сек.

4. Ультразвуковые толщиномеры. Ультразвуковые колебания широко используют при определении толщины изделия (лист, стенка трубы), а также и в дефектоскопии.

В зависимости от упругих свойств среды в ней могут распространяться упругие волны различных типов, отличающиеся направлением смещения колеблющихся частиц. Если колебания частиц происходят в направлении, совпадающем с направлением распространения волны (с направлением луча), то такие волны называют продольными. Продольные волны могут распространяться в твердой, жидкой и газообразной средах. Вследствие того, что частицы среды при распространении в ней продольных упругих волн колеблются в направлении луча, структура продольной волны представляет собой чередование зон сжатия и разрежения. Продольные упругие колебания с частотой от 16 до 20 кГц воспринимаются человеком в виде звука. Продольные колебания более низких и более высоких частот не слышны и их называют соответственно инфра- и ультразвуковыми.

Если направление колебаний частиц среды перпенди­кулярно направлению распространения волны, то волны называют поперечными или сдвиговыми. Сдвиговые волны могут распространяться только в твердой среде; газы и жидкости не обладают сдвиговой упругостью.

На свободной поверхности твердого тела могут распространяться поверхностные волны или волны Релея. При этом частицы совершают движение по эллипсам, ориентированным в плоскости, образованной лучом и нормалью к поверхности тела. Амплитуда колебаний частиц по мере удаления от свободной поверхности убывает по экспоненциальному закону, и поэтому волна распространяется в глубь тела лишь на глубину порядка длины волны.

При распространении ультразвуковых колебаний (УЗК) в тонком листе, могут возникать нормальные или свободные волны.

Нормальные волны возбуждаются обычно в результате трансформации продольных УЗК, падающих на поверхность листа под некоторыми углами, отличными от нуля. При этом фазовая скорость нормальной волны должна совпадать с фазовой скоростью падающей продольной волны.

Для излучения и приема обычно используют пьезоэлектрические преобразователи.

При измерении толщины листов наибольшее распространение получили резонансный метод и эхо-метод. Этими методами можно измерять толщину изделия при одностороннем доступе (например, трубы), а также выявлять расслоения в листах, в биметаллах и т.д.

Основное преимущество ультразвукового метода перед электромагнитными, рентгеновскими и другими методами контроля состоит в независимости результатов измерения от неоднородности и непостоянства электрической и магнитной структуры материала изделия и возможности измерения с высокой точностью как малых, так и больших толщин[1].

Date: 2015-09-18; view: 849; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.006 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию