Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Электрические свойства веществаСтр 1 из 15Следующая ⇒
РАСЧЁТНО-ГРАФИЧЕСКОЕ ЗАДАНИЕ 4 РАСЧЁТ ХАРАКТЕРИСТИК ПОЛЯРИЗАЦИИ РАЗРЕЖЕННОГО ВОДЯНОГО ПАРА Краткие теоретические сведения Введение Важнейшими характеристиками вещества, определяющими его физико-химические свойства, являются поляризуемость и дипольный момент. Они отражают свойства электронной оболочки и определяют макроскопические характеристики вещества (диэлектрическую проницаемость и энергию межмолекулярного взаимодействия). Работы Дебая, Онзагера, Кирквуда, Фрелиха (Дебай, 1931; Onsager, 1936; Kirkwood, 1939; Фрелих, 1960) по теории поляризации являются классическими. Более поздние работы по теории диэлектрической поляризации (Свищев, 1992; Агафонов, Труфанов, 1990; Быков, 1993; Kawada, 1978, 1979; Worz and Cole, 1969) противоречивы, не связаны с электрическими свойствами молекул в конденсированном состоянии и поэтому непригодны для расчета характеристик электрического поля в диэлектриках. Одной из основных причин, из-за которой до настоящего времени нет общепринятой теории поляризации вещества, является отсутствие строгого выражения, определяющего напряженность электрического поля в диэлектрике. Электрические свойства вещества Источником электрического поля является электрический заряд. Суммарный заряд молекул равен нулю (Sqi=0), однако они обладают электрическими свойствами и вокруг них существует электрическое поле. У многих молекул заряд в пространстве распределен несимметрично. В самом грубом приближении молекулу можно считать диполем. Д иполь – это система, состоящая из двух равных по величине и противоположных по знаку электрических зарядов, расстояние между которыми мало по сравнению с расстоянием до исследуемой области пространства, в которой рассчитывается напряженность электрического поля. Электрический момент диполя
где q – величина одного из зарядов по модулю; r – плечо диполя. Плечо диполя – вектор, направленный от центра тяжести отрицательного заряда к положительному. Электрические и оптические свойства молекул зависят от их симметрии. У инертных и неполярных молекул в отсутствие внешнего электрического поля центры тяжести положительных и отрицательных зарядов совпадают (r = 0), поэтому постоянные дипольные моменты у таких молекул равны нулю. В молекулах полярных диэлектриков центры положительных и отрицательных зарядов в пространстве разнесены, поэтому молекулы имеют постоянные дипольные моменты. В процессе образования молекул происходит деформация электронных оболочек атомов. Так, например, при образовании молекулы воды электронные облака атомов О и Н деформируются и на атомах водорода и кислорода появляются "избыточные" заряды. Значения этих зарядов по некоторым данным соответственно равны (+0,328e) и (-0,656e). Следовательно, молекула воды является диполем. Дипольный момент молекулы воды состоит из дипольных моментов связей О–Н. Дипольный момент связи О–Н равен произведению заряда |0,328e| (0,328×1.602177×10-19 Кл) на плечо диполя r(О–Н) =0,9572×10-10 м: р(О–Н) = 5,030×10-30 Кл×м (1,508×10-18 ед. СГС). В гауссовой системе единиц измерения (СГСЭ) дипольный момент измеряется в дебаях (D). Заряды структурных частиц в молекулах – порядка 10-10 ед. СГСЭq (заряд электрона 4,8×10-10 ед. СГСЭq), а расстояния между ними – порядка ангстрема (1×10-8 см), поэтому в качестве дебая (D) принимается величина, равная 1×10-18 ед. СГСЭ (1D = 1×10-18 ед. СГСЭ). Единицы измерения дипольного момента в СГС и СГСЭ соотносятся следующим образом: 1D = 3,33564×10-30 Кл×м. Дипольный момент молекулы воды, имеющей две связи О–Н, направленные под углом q = 104,523° друг к другу, можно найти из формулы [3] m = (m12+ 2m1m2cos q +m22)1/2. (2) При m1 =m2 дипольный момент m =2m1cos(q/2). Подставив в это выражение значения m1=m2=5,030×10-30 Кл×м 6,157×10-30 Кл×м или 1,846 D. Наиболее достоверным значением дипольного момента молекулы воды по одним данным считается значение 6,188×10-30Кл×м (1,855 D), по другим – 6,118×10-30Кл×м (1,834 D). Если диполь внести во внешнее электрическое поле E0, то оно стремится повернуть диполь в направлении поля (рис.1), так как на диполь действует вращательный момент М = mЕsinq, (3) где q – угол между векторами E и m. В неоднородном электрическом поле на диполь, кроме вращательного момента M, действует сила R = F2 – F1, стремящаяся втянуть диполь в область более сильного поля (рис. 2). Следовательно, воздействуя на молекулы-диполи внешним электрическим полем, мы можем управлять их движением.
Электрическим моментом второго порядка является модель, называемая квадруполем (четырехполюсником). Он представляет собой совокупность двух диполей с равными по величине, но противоположными по знаку дипольными моментами, расположенными друг от друга на расстоянии а (рис. 3). Основной характеристикой квадруполя является квадрупольный момент Q. Для квадруполей, изображенных на рис. 3, квадрупольный момент равен: Q = 2 qlа, где l – плечо диполя; а – расстояние между центрами диполей.
Молекула воды имеет три квадрупольных момента Qxx, Qyy и Qzz, значения которых рассчитаны с помощью методов квантовой механики. Значения моментов Qxx, Qyy и Qzz молекулы воды и среднее значение квадрупольного момента Q = (1/3)×(Qxx + Qyy + Qzz) приведены в монографии Эйзенберга и Кауцмана (Эйзенберг Д., Кауцман В., 1975). Данная модель описывает реальность весьма грубо, так как при этом не учитываются изменения, происходящие с молекулой в процессе ее взаимодействия с полем. Так, например, у центросимметричных молекул в отсутствие внешнего электрического поля постоянный электрический дипольный момент равен нулю. Внесение молекул в сильные электрические поля приводит к существенной деформации зарядовой плотности и появлению у них индукционного дипольного момента. На практике часто рассматриваются взаимодействия, преобладающие над другими. Так, например, энергия квадруполь-квадрупольного взаимодействия молекул воды друг с другом существенно меньше энергии диполь-дипольного взаимодействия. С другой стороны, энергия квадруполь-квадрупольного взаимодействия двух неполярных молекул в случае больших расстояний между ними весьма существенна, чтобы ею можно было пренебрегать. Данный факт говорит о том, что нахождение энергии взаимодействия в каждом конкретном случае требует индивидуального подхода. Date: 2015-09-03; view: 1168; Нарушение авторских прав |