Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
А. Декартова координатная система
Наиболее просто кинематические характеристики движения определяются в ортонормированном базисе (единичные базисные векторы ортогональны). Обычно с этим базисом связывают декартову систему осей . Три числа , которые определяют положение точки М относительно этой системы координат,- это проекции радиуса-вектора на координатные оси: (1.5) Координаты движущейся точки (1.6) обычно полагают дважды дифференцируемыми по времени функциями. Сами уравнения (1.6) называют уравнениями движения точки в декартовой координатной системе или уравнениями траектории точки в параметрической форме. Если удается исключить из этих уравнений время t, то комбинации любых двух полученных соотношений задают траекторию движения точки явно. Для траектории движения, расположенной в одной плоскости (ее всегда можно совместить с плоскостью ), в (1.6) достаточно записать лишь первые два уравнения либо получить . Продифференцировав (1.5) по времени, вектор скорости можно представить в форме: (1.7) где - проекции вектора скорости на соответствующие оси координат. Модуль вектора скорости определяется по формуле (1.8) а направление этого вектора задается косинусами углов с соответствующими координатными осями («направляющие косинусы»): . (1.9) Выполнив такую же последовательность операций, можно получить выражения для вектора ускорения, его проекций, модуля и направляющих косинусов углов:
(1.10) . ПРИМЕР 1.1. Морское орудие, дульный срез которого расположен на высоте над уровнем моря, производит выстрел под углом к горизонту; скорость вылета снаряда (см. рис.1.3). Полагая известными уравнения движения снаряда в декартовой координатной системе (начало координат на дульном срезе, - ускорение свободного падения, - время движения, сопротивление воздуха не учитывается):
необходимо рассчитать дальность полета снаряда, его скорость и ускорение в момент удара о воду. РЕШЕНИЕ. Формулы для вычисления проекций скорости и ускорения на оси декартовой системы получаются дифференцированием по времени уравнений движения снаряда:
В общем случае значения величин проекций могут быть получены только после расчета времени полета снаряда . Заметим, что в рассматриваемом случае на всем протяжении полета ускорение снаряда оказалось постоянным и равным ускорению свободного падения. Время полета определим из условия .
Решив квадратное уравнение относительно , получим: . Второй, отрицательный, корень уравнения отброшен, как не имеющий физического смысла. Подставим найденное значение в формулы для проекций скорости:
Тогда величина скорости снаряда при ударе о воду будет , а дальность полета снаряда равна .
Date: 2015-09-03; view: 415; Нарушение авторских прав |