![]() Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
![]() Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
![]() |
Для механической системы
Рассмотрим механическую систему, состоящую из n точек. Обозначим равнодействующую внешних сил, приложенных к произвольной точке системы
где k = 1,2,3,…, n. Суммируя, правые и левые части этого выражения по всем точкам рассматриваемой системы, получим
Рассмотрим слагаемые, вошедшие в последнее выражение. Первое слагаемое правой части представляет собой сумму элементарных работ всех внешних сил, действующих на все точки системы, то есть
Второе слагаемое правой части представляет собой сумму элементарных работ всех внутренних сил, действующих на все точки системы, поэтому
Левая часть выражения, учитывая формулу (4.60)
Учитывая приведенные выражения, окончательно получим
Формула (4.68) выражает теорему об изменении кинетической энергии системы в дифференциальной форме. Эта теорема формулируется следующим образом: дифференциал от кинетической энергии системы равен сумме элементарных работ всех внешних и внутренних сил, действующих на систему. Интегрируя (4.68) между начальным и конечным положением системы, получим
где
Формула (4.69) выражает теорему об изменении кинетической энергии системы в интегральной форме, которая формулируется, следующим образом: изменение кинетической энергии системы при её перемещении из начального положения в конечное равно сумме работ всех внешних и внутренних сил, действующих на систему на этом перемещении. Если разделить (4.68) на
или
где
Формула (4.70) выражает теорему об изменении кинетической энергии в дифференциальной форме, формулируемую следующим образом: первая производная по времени от кинетической энергии системы равна сумме мощностей всех внешних и внутренних сил, действующих на систему. Для механических систем, состоящих из абсолютно твердых тел и абсолютно гибких нерастяжимых нитей, справедливы формулы (4.57), (4.58) и (4.59):
Следовательно, для таких механических систем получим
Таким образом, для механических систем, состоящих из абсолютно твердых тел и абсолютно гибких нерастяжимых нитей изменение кинетической энергии определяется только внешними силами, действующими на систему.
Date: 2015-09-03; view: 378; Нарушение авторских прав |