Главная
Случайная страница
Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Уравнения движения манипулятора с вращательными сочленениями
Конкретизация равенств (10-13) – (10-21) для шестизвенного манипулятора с вращательными сочленениями приводит к следующему виду членов уравнения, определяющих динамику движения манипулятора:
Матрица . Исходя из равенства (10-18), имеем:
, (10-22)
где
,, ,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
.
Вектор . Коэффициенты при обобщённых скоростях в выражениях (10-18), (10-19) для центробежных и кариолисовых сил можно сгруппировать в матрицы вида:
, . (10-23)
Пусть скорости изменения всех шести присоединенных переменных манипулятора характеризуются вектором :
. (10-24)
С учетом (10-23) и (10-24) равенство (10-19) можно представить в виде следующего произведения матриц и векторов:
. (10-25)
Здесь индекс i указывает номер сочленения ( ), в котором измеряются моменты и силы центробежного и кориолисового типа.
. (10-26)
Вектор гравитационных сил . Из равенства (10-21) имеем:
, (10-27)
где
,
,
,
,
,
.
Коэффициенты в выражениях (10-18) – (10-21) являются функциями как присоединенных переменных, так и динамических параметров манипулятора. Их называют динамическими коэффициентами манипулятора. Физический смысл динамических коэффициентов легко понять из уравнений (10-18) – (10-21), описывающих динамику движения манипулятора.
1. Коэффициенты , определяемые равенством (10-21), учитывают силу тяжести, действующую на каждое из звеньев манипулятора.
2. Коэффициенты , определяемые равенством (10-18), устанавливают связь действующих в сочленениях сил и моментов с ускорением присоединенных переменных. В частности, при i = k коэффициент связывает момент , действующий в i -м сочленении, с ускорением i -й присоединенный переменной. Если , то определяет момент (или силу), возникающий в i -м сочленении под действием ускорения в k -м сочленении. Поскольку матрица инерции симметрична и то .
3. Коэффициенты , определяемые равенствами (10-19) и (10-20), устанавливают связь действующих в сочленениях сил и моментов со скоростями изменения присоединенных переменных. Коэффициент определяет связь момента, возникающего в i -м сочленении в результате движения в k -м и m -м сочленениях, со скоростями изменения k -й и m -й присоединенных переменных. В соответствии с физическим смыслом .
При вычислении рассмотренных коэффициентов полезно знать, что некоторые из этих коэффициентов могут иметь нулевые значения по одной из следующих причин:
1. Конкретная кинематическая схема манипулятора может исключить динамическое взаимовлияние движений в некоторых парах сочленений (коэффициенты ).
2. Некоторые из коэффициентов присутствуют в формулах (9-20) и (10-19) чисто фиктивно, будучи нулевыми в соответствии с физическим смыслом. Например, коэффициент всегда равен нулю, так как центробежная сила, порожденная движением в i -м сочленении, на само i -е сочленение влияния не оказывает, хотя и влияет на другие сочленения, т.е. при .
3. Некоторые из динамических коэффициентов могут принимать нулевые значения в отдельные моменты времени при реализации определённых конфигураций манипулятора
Date: 2015-08-15; view: 369; Нарушение авторских прав Понравилась страница? Лайкни для друзей: |
|
|