Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Лекция 14
Планирование траекторий манипулятора Планирование траекторий движения манипулятора – это задача выбора закона управления, обеспечивающего движение манипулятора вдоль некоторой заданной траектории. Перед началом движения манипулятора важно знать: 1. существуют ли на его пути какие-либо препятствия; 2. накладываются ли какие-либо ограничения на траекторию схвата. В зависимости от ответов на эти вопросы выбирается один из четырех типов управления манипулятором (табл. 14.1).
Таблица 14.1. Типы управления манипулятором
Рассмотрим планирование траектории манипулятора при отсутствии препятствий (II и IV тип). Задача состоит в разработке математического аппарата для выбора и описания желаемого движения манипулятора между начальной и конечной точками траектории. При планировании траекторий обычно применяется один из двух подходов: 1. Задается точный набор ограничений (например, непрерывность и гладкость) на положение, скорость и ускорение обобщенных координат манипулятора в некоторых (называемых узловыми) точках траектории. Планировщик траекторий после этого выбирает из некоторого класса функций (как правило, среди многочленов, степень которых не превышает некоторое заданное n) функцию, проходящую через узловые точки и удовлетворяющую в них заданным ограничениям. Определение ограничений и планирование траектории производится в присоединенных координатах. 2. Задается желаемая траектория манипулятора в виде некоторой аналитически описываемой функции, как, например, прямолинейную траекторию в декартовых координатах. Планировщик производит аппроксимацию заданной траектории в присоединенных или декартовых координатах. Планирование в присоединенных переменных обладает тремя преимуществами: 1) задается поведение переменных, непосредственно управляемых в процессе движения манипулятора; 2) планирование траектории может осуществляться в реальном времени; 3) траектории в присоединенных переменных легче планировать. 4) Должны быть сведены к минимуму бесполезные движения типа «блуждания».
Рисунок 14.1. Блок-схема планировщика траекторий Недостаток – сложность определения положения звеньев и схвата в процессе движения. Это необходимо для предотвращения столкновения с препятствием. В общем случае основной алгоритм формирования узловых точек траектории в пространстве присоединенных переменных весьма прост: ; цикл: ждать следующего момента коррекции; ; =заданное положение манипулятора в пространстве присоединенных переменных в момент времени ; Если , выйти из процедуры; Выполнить цикл. Здесь – интервал времени между двумя последовательными моментами коррекции параметров движения манипулятора. Из алгоритма видно, что все вычисления производятся для определения траекторной функции , которая должна обновляться в каждой точке коррекции параметров движения манипулятора. На планируемую траекторию накладывается четыре ограничения: 1) Узловые точки должны легко вычисляться нерекуррентным способом. 2) Промежуточные положения должны определяться однозначно. 3) Должна быть обеспечена непрерывность присоединенных координат и их двух первых производных, чтобы планируемая траектория в пространстве присоединенных переменных была гладкой. 4)
Перечисленным ограничениям удовлетворяют траектории, описываемые последовательностями полиномов. В общем случае планирование траекторий в декартовых координатах состоит из двух последовательных шагов: 1) формирование последовательности узловых точек в декартовом пространстве, расположенных вдоль планируемой траектории схвата; 2) выбор некоторого класса функций, аппроксимирующих участки траектории между узловыми точками в соответствии с некоторым критерием (например, прямые, дуги круга, параболы и т.п.). Первый подход позволяет обеспечить высокую точность движения вдоль заданной траектории. Однако, при отсутствии датчиков положения схвата в декартовых координатах, для перевода декартовых координат в присоединенные требуется большое количество вычислений, что замедляет время движения манипулятора. Поэтому используется второй подход – декартовы координаты узловых точек преобразуются в соответствующие присоединенные координаты с последующим проведением интерполяции в пространстве присоединенных переменных полиномами низкой степени. Это сокращает вычисления и позволяет учесть ограничения динамики манипулятора. Но точность движения снижается.
Date: 2015-08-15; view: 505; Нарушение авторских прав |