Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Подвижные системы координат





Подвижные системы координат могут участвовать как во вращательном, так и в поступательном движениях относительно некоторой неподвижной инерциальной системы координат. На рис. 12.1 изображена подвижная система координат , которая совершает вращательное и поступательное движения относительно инерциальной системы координат . Положение материальной точки р, обладающей масcой m, относительно систем координат и задается векторами r и r * соответственно. Положение точки О* в системе координат определяется вектором h.

Рисунок 12.1. Подвижная система координат

 

Соотношения между векторами r и r* даётся выражением (см. рис. 12.1):

. (12-1)

Если система координат движется относительно системы , то:

, (12-2)

где и - скорости точки р в системах координат и соответственно, а - скорость точки 0* в системе координат .

С учетом равенства (11-13) выражение (12-2) представим:

. (12-3)

Аналогично ускорение точки р в системе координат :

, (12-4)

где и - ускорения точки р в системах координат и соответственно, а - ускорение системы координат в инерциальной системе координат .

С учетом (11-14) равенство (12-4) можно представить в виде:

. (12-5)

Полученные соотношения для подвижных систем координат применима к системам координат звеньев манипулятора.

 

 







Date: 2015-08-15; view: 1278; Нарушение авторских прав



mydocx.ru - 2015-2024 year. (0.006 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию