Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Меридиональные части





Расстояния по меридиану от экватора до данных параллелей на меркаторской карте, выраженные в линейных единицах, называются меридиональными частями. Они обозначаются буквой D.

Для удобства меридиональные части выражают длиной дуги экватора в I, называемой экваториальной милей.

В табл. 26 (МТ—63) длина меридиональных частей рассчитана применительно к эллипсоиду Красовского.

Значения в таблице вычислены для широт от 0 до 89° 59' через 1' широты с точностью до 0,1 экваториальной мили. Для определения величины меридиональных частей на промежуточных значениях минуты широты (для десятых долей 1') применяют простое интерполирование.

Пример. Найти меридиональную часть для параллели 50° 18',5.

Решение. По табл. 26 (МТ—6.3) находим:

 


Расстояние по меридиану на меркаторской проекции между двумя параллелями, выраженное в экваториальных милях, называется разностью меридиональных частей (РМЧ) и обозначается AD.

Разность меридиональных частей двух параллелей равна алгебраической разности меридиональных частей этих параллелей

 


Пример. Определить разность меридиональных частей параллелей cp1 = 63°40' N и cp2 = 66°20' N.

Решение. По табл. 26 (МТ—63) находим:

 


Пример. Определить разность меридиональных частей параллелей cp1 = 5°12' N и cp2 = 3°28, 5.

Решение. По табл. 2 6 (МТ—63) имеем:

 


Меридиональные части используют при построении картографической сетки морских карт в меркаторской проекции, а разность меридиональных частей входит в одну из основных формул письменного счисления (см. гл. VII).

Разность меридиональных частей двух параллелей, отстоящих друг от друга на 1', даст нам длину отрезка, изображающего на карте меркаторской проекции одну экваториальную минуту в данной широте. Эта разность меридиональных частей представляет не что иное, как изображение одной морской мили на карте меркаторской проекции. Меркаторской милей пользуются как единицей линейного масштаба для измерения широт и расстояний на карте меркаторской проекции.

Поскольку морская миля, как это было указано ранее, имеет постоянную величину на поверхности Земли, то она на морской карте меркаторской проекции изображается отрезками различной длины, в зависимости от широты места, к которому она относится.

Пример. Рассчитать величину меркаторской мили в широтах 40° и 70°.

Решение. 1) Выбираем меридиональные части для широт 39°30' и 40°30' по табл. 26 (МТ—63):

 


Отсюда меркаторская миля в широте 40° равна 78,0/60 = 1,3 экв. мили.

2) выбираем меридиональные части для широт 69°30' и 70°30':

 


Следовательно, в cp = 70° меркаторекая миля равна 175,4/60 = 2,923 экв. мили. Из этого примера видно, что отношение длины меркаторской мили в cp = 70° к длине ее cp = 40° равно 2,923/1,3 = 2,248, т. е. меркаторская миля в ср = 70° изображается отрезком, в 2,248 раза большим, чем в cp = 40°.

Поэтому при измерении по морской навигационной карте расстояний между какими-либо точками необходимо расстояния в одну милю или в несколько миль брать всегда с боковой рамки карты в той же самой широте, в какой расположены точки. Практически для измерения расстояний на карте меркаторской проекции пользуются длиной меркаторской мили, соответствующей средней широте измеряемой линии.








Date: 2015-08-15; view: 1888; Нарушение авторских прав



mydocx.ru - 2015-2024 year. (0.006 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию