Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Интерференция света. Методы наблюдения интерференции света. Расчет интерфер. от 2х источников света
Предположим, что две монохроматические световые волны, накладываясь друг на друга, возбуждают в определенной точке пространства колебания одинакового направления: x1 =А 1 cos (wt+j1) и x2= А 2cos(wt+j2). Под х понимают напряженность электрического Е или магнитного Н полей волны; векторы Е и Н колеблются во взаимно перпендикулярных плоскостях. Напряженности электрического и магнитного полей подчиняются принципу суперпозиции. Амплитуда результирующего колебания в данной точке А 2 =А 21 +A 22+2 A 1 A 2cos(j2-j1). Так как волны когерентны, то cos(j2-j1) имеет постоянное во времени (но свое для каждой точки пространства) значение, поэтому интенсивность результирующей волны (I~А2) I=I1+I2+2ÖI1I2cos(j2-j1). В точках пространства, где cos(j2-j1)>0, интенсивность I>I1+I2, где cos(j2-j1)<0, интенсивность I<I1+I2. Следовательно, при наложении двух (или нескольких) когерентных световых волн происходит пространственное перераспределение светового потока, в результате чего в одних местах возникают максимумы, а в других — минимумы интенсивности. Это явление называется интерференцией света. Произведение геометрической длины s пути световой волны в данной среде на показатель n преломления этой среды называется оптической длиной пути L, а D= L 2- L 1 — разность оптических длин проходимых волнами путей — называется оптической разностью хода. Если оптическая разность хода равна целому числу волн в вакууме D=±mlА0 (m=0, 1, 2,...), (172.2) то 6= ±2mp и колебания, возбуждаемые в точке М обеими волнами, будут происходить в одинаковой фазе. Следовательно, (172.2) является условием интерференционного максимума. Если оптическая разность хода то d=±(2m+1)p и колебания, возбуждаемые в точке М обеими волнами, будут происходить в противофазе. Следовательно, (172.3) является условием интерференционного минимума. 1. Метод Юнга. Источником света служит ярко освещенная щель S (рис.245), от которой световая волна падает на две узкие равноудаленные щели S1 и S2, параллельные щели S. Таким образом, щели S1 и S2 играют роль когерентных источников. Интерференционная картина (область ВС) наблюдается на экране (Э), расположенном на некотором расстоянии параллельно S1 и S2. Как уже указывалось (см. §171), Т. Юнгу принадлежит первое наблюдение явления интерференции. 3. Зеркала Френеля. Свет от источника S (рис. 246) падает расходящимся пучком на два плоских зеркала А 1 О и A 2 O, расположенных относительно друг друга под углом, лишь немного отличающимся от 180° (угол j мал). Учитывая правила построения изображения в плоских зеркалах, можно показать, что и источник, и его изображения S 1 и S2 (угловое расстояние между которыми равно 2j) лежат на одной и той же окружности радиуса r с центром в О (точка соприкосновения зеркал). Световые пучки, отразившиеся от обоих зеркал, можно считать выходящими из мнимых источников S1 и S2, являющихся мнимыми изображениями S в зеркалах. Мнимые источники S1 и S2 взаимно когерентны, и исходящие из них световые пучки, встречаясь друг с другом, интерферируют в области взаимного перекрывания (на рис. 246 она выполнена зеленым цветом). Можно показать, что максимальный угол расхождения перекрывающихся пучков не может быть больше 2j. Интерференционная картина наблюдается на экране (Э), защищенном от прямого попадания света заслонкой (3). 3. Бипризма Френеля. Она состоит из двух одинаковых, сложенных основаниями призм с малыми преломляющими углами. Свет от источника S (рис. 247) преломляется в обеих призмах, в результате чего за бипризмой распространяются световые лучи, как бы исходящие из мнимых источни- ков S 1 и S 2, являющихся когерентными. Таким образом, на поверхности экрана (в области, выполненной в цвете) происходит наложение когерентных пучков и наблюдается интерференция. 4. Расчет интерференционной картины от двух источников. Расчет интерференционной картины для рассмотренных выше методов наблюдения интерференции света можно провести используя две узкие параллельные щели, расположенные достаточно близко друг к другу. Щели S 1 и S 2 находятся на расстоянии d друг от друга и являются когерентными (реальными или мнимыми изображениями источника S в какой-то оптической системе) источниками света. Интерференция наблюдается в произвольной точке А экрана, параллельного обеим щелям и расположенного от них на расстоянии l, причем l>>d. Начало отсчета выбрано в точке О, симметричной относительно щелей. Интенсивность в любой точке А экрана, лежащей на расстоянии х от О, определяется оптической разностью хода D=s2 - s 1 (см. §172). Из рис. Имеем s 22 = l2+(x+d/2) 2; s21= l 2+(x-d/2)2,откуда s22- s 21 =2xd, или D=s2 -s1 =2xd/(s1 +s2). Из условия l>>d следует, что s 1 +s 2 »2l, поэтому D= xd/l. Подставив найденное значение D получим, что максимумы интенсивности будут наблюдаться при хmax=±т(l/d)l 0 (m = 0, 1, 2,...), а минимумы — при xmin=±(m+1/2)(l/d)l0 (m = 0, 1, 2,...). Расстояние между двумя соседними максимумами (или минимумами), называемое шириной интерференционной полосы, равно Dx= (l/d)l0. Dx; не зависит от порядка интерференции (величины m) и является постоянной для данных l, d и l 0. Date: 2015-08-06; view: 593; Нарушение авторских прав |