![]() Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
![]() Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
![]() |
Сравнительные характеристики программных и аппаратурных отказов
Программные отказы изделия и аппаратурные отказы имеют много общего, но во многом существенно различаются. Общее между ними: а) невыполнение объектом заданных функций; б) времена до отказов и времена устранения отказов носят случайный характер; в) методы обработки статистических данных об отказах одинаковы, а потому статистические оценки показателей надёжности аппаратурной и программной, полученные по результатам испытаний и эксплуатации, могут быть одинаковыми по своему названию: средняя наработка объекта на программный отказ, интенсивность программных отказов объекта и т.д. Возможны и объединённые (комплексные) оценки: средняя наработка объекта на программный и аппаратурный отказ и т.п. Вместе с тем отказы программные существенно отличаются от отказов аппаратурных: а) отказ аппаратурный зависит либо от времени, либо от объёма выполненной работы, а отказ программный - от той функции, которую выполняет изделие под управлением программы (точнее, от того, с какой вероятностью программа выйдет на такой участок, который содержит ошибку); б) обнаружение и устранение аппаратурного отказа (заменой отказавшего элемента исправным) не означает, что такой же отказ не повторится при дальнейшей работе изделия, а обнаружение и устранение отказа программного (исправление программы) означает, что такой отказ в дальнейшем не повторится; в) программный отказ, обнаруживаемый при автономной проверке программы, может переходить в разряд недействующих, если состояние аппаратуры делает её нечувствительной к данному виду программного отказа. Например, если в программе ошибочно не предусмотрена программная защита от аппаратурного сбоя, то это программный отказ, но если при этом в аппаратуре не возникает сбоя, то отказ программный становится недействующим; г) прогнозировать возникновение аппаратурных отказов сравнительно легко, а прогнозировать возникновение отдельных программных отказов трудно, а часто и невозможно. Для отдельных программных отказов трудно предвидеть время, когда они становятся действующими, а когда - недействующими; д) аппаратурные отказы целесообразно подразделять на внезапные и постепенные, т.е. отказы, различные по своей физической природе, законам распределения времени до отказа, методам борьбы за снижение их вероятности. Программные отказы нет смысла делить на внезапные и постепенные. Они возникают внезапно, как только программа переходит на такой участок, который содержит “ошибку”. В то же время они по природе своей не совпадают с внезапными аппаратурными отказами. Вероятность их возникновения не связана с продолжительностью работы изделия, а связана с условной вероятностью того, что программа содержит ошибку в данной части программы, и вероятностью того, что изделие будет работать под управлением этой части программы.
16.2 Проверка и испытания программ.
Испытания программ на надёжность и испытания изделий на надёжность их программного обеспечения - обязательные этапы при проверке надёжности систем. Испытания с целью проверки надёжности программ осуществляются с помощью специальных программ (тестирование) и специальных (имитационных) стендов. Проверяется при этом степень отработанности программы и её соответствие заданным требованиям. Испытания с целью проверки надёжности изделий, работающих под управлением программ, осуществляются при совместной работе программы и изделия. Проверяются при этом и степень отработанности программы в соответствии с заданными требованиями, и корректность этих требований, и согласованность взаимодействий программы и аппаратуры. Степень отработанности программы может проверяться различными методами. Чем выше требование к достоверности проверки, тем более сложен метод проверки. Рассмотрим один из наиболее простых методов. В процессе проверки “корректности” программы (с помощью наблюдений за работой либо изделия, либо имитирующего устройства, либо на специальном стенде с помощью тестов) фиксируются времена обнаружения ошибок в программе. Результаты проверки обрабатываются при следующих предположениях: 1) ошибки программы независимы. Каждый раз после обнаружения они устраняются и в дальнейшем не проявляются. 2) интенсивность ошибок уменьшается по мере их обнаружения и устранения. Статистическая интенсивность программных l ошибок определяется так же как интенсивность аппаратных отказов по формуле: где n(t) - число идентичных программ, не отказавших к моменту времени t; Dn(t) - число отказавших идентичных программ на интервале (t, t + Dt). Выявление и устранение ошибок производится до тех пор, пока значение Положение о том, что при создании программного обеспечения больших систем возможно возникновение ошибок и что выявление программных ошибок - чрезвычайно трудная задача, не только не должно обезоруживать разработчиков систем, а наоборот, должно ориентировать их на максимальное сосредоточение сил для ликвидации программных отказов. Влияние программных ошибок на надёжность изделия должно непрерывно уменьшаться с каждым новым этапом освоения программ (разработка - отладка - опытная эксплуатация - нормальная эксплуатация) так, чтобы на этапе нормальной эксплуатации объекта программная надёжность его была на уровне заданных требований. 16.3 Основные проблемы исследования надёжности программного обеспечения.
В сложной программно - управляемой технической системе любого типа можно выделить две основные, относительно независимые части. 1. Совокупность автономно, параллельно работающих технических схем и устройств - аппаратная часть. Совокупность программ, ориентированных на решение данного комплекса задач, представляющих математическое обеспечение технической системы и образующих её программную часть (операционная система и рабочие программы пользователей). При общем анализе характеристик технической системы (её надёжности) следует учитывать, что если аппаратная часть жестко задана, неизменна и её надёжность может быть обеспечена на требуемом уровне, то программная часть в каждом отдельном случае может иметь ряд модификаций, является достаточно гибкой, изменяемой частью технической системы и в обеспечении совокупной надёжности системы определяет наибольшее количество ошибок. Авторы [19] считают, что в настоящее время около половины отказов сложных вычислительных систем обусловлено ошибками программ, а с ростом надёжности элементной базы (ИС, БИС) число отказов, связанных с математическим обеспечением, возрастает до 90% от общего числа отказов. К основным проблемам исследования надёжности программного обеспечения (ПО) относится: Разработка методов оценки и прогнозирования надёжности ПО на основе совокупности количественных показателей и характеристик, идентичных показателям аппаратурной надёжности. Определение факторов, влияющих на достижение заданного уровня надёжности ПО. Разработка методов, обеспечивающих достижение заданного уровня надёжности ПО. Совершенствование методов повышения надёжности ПО в процессе проектирования и эксплуатации. Эффективный способ повышения надёжности ПО - использование методов структурного проектирования программ, так как в зависимости от структуры ПО последствия отдельных ошибок могут быть легко обнаружены, локализованы и исправлены на некотором небольшом участке программы либо распространиться на другие уровни и модули ПО.
16.4 Критерии оценки надёжности программных изделий.
Всё множество различных показателей надёжности программных систем можно разбить на две большие группы: Количественные показатели надёжности ПО. Качественные показатели надёжности ПО. Не рассматривая качественные характеристики надёжности, которые достаточно подробно исследованы в [20, 21], остановимся более подробно на возможности использования количественных показателей для оценки и прогнозирования надёжности ПО. Наиболее удобно в качестве таких показателей использовать статистические (вероятностные) критерии хорошо разработанной теории надёжности радиоэлектронной аппаратуры. Следует учитывать, что оценка надёжности ПО на основе статистической теории надёжности аппаратуры возможна в пределах некоторых ограничений, учитывающих специфику ПО как определённого вида продукта человеческого труда. Можно выделить следующие характеристики и количественные показатели надёжности ПО: Безотказность. Говоря о безотказности ПО, характеризующей способность ПО выполнять заданные функции в заданных условиях эксплуатации технической системы, будем считать, что отказ программы - это результат проявления скрытой ошибки. Следует иметь в виду, что входные данные и данные создаваемые программой, не являются элементами ПО, поскольку их надёжность связана с работой внешних устройств и аппаратной части системы. Только константы, вводимые программистом, считаются частью ПО. Для невосстанавливаемых в ходе эксплуатации программ обобщённой характеристикой надёжности (безотказности) является вероятность безотказной работы P(t), характеризующая вероятность того, что за время t отказа не произойдёт: P(t) = P(T ³ t) = 1 - q(t); где T - время работы ПО до отказа или наработка ПО до отказа (T - случайная величина); q(t) - вероятность отказа ПО. Отсюда можно определить функцию интенсивности отказов:
Среднее время наработки до наступления отказа (среднее время безотказной работы) определяется как математическое ожидание временного интервала между двумя последовательными нарушениями работоспособности ПО: Для экспоненциального закона распределения отказов:
Поскольку программы имеют явно выраженные производственные циклы работы, то наработка программы может быть выражена либо через календарное время, либо через машинное время, либо через количество отработанных операторов, решённых задач и т.п. Один из способов оценки где H - общее количество часов успешного прогона программы, определяемое по формуле:
где n - общее количество прогонов ПО; r - количество прогонов ПО без ошибок; l = n -r - количество прогонов с ошибками; Полагая количество ошибок постоянным, можно вычислить интенсивность отказов ПО, приведённую к одному часу работы Классифицируя отказы ПО по видам отказов - аппаратные, программные, оператора и т.д., можно определить частные (взвешенные) интенсивности отказов по соответствующим видам ошибок - В случае, если в ходе эксплуатации возможна корректировка ПО или восстановление программы после отказа, вызванного действием помех (сбоев) от внепрограммных источников, а время восстановления достаточно мало по сравнению с временем между отказами или сбоями, обобщающей характеристикой безотказности ПО является интенсивность потока отказов во времени
где H(t) - среднее число отказов за время t; Для программ, время корректировки которых сравнимо с временем между отказами, обобщающей характеристикой безотказности является функция коэффициента готовности 2. Устойчивость. Устойчивость ПО определяет способность системы выполнять заданные функции в условиях действия помех (ошибок, сбоев, отказов), возникающих во внепрограммных источниках (техническое обеспечение, исходные данные). При оценке устойчивости ПО должны быть заданы параметры окружающей среды, по отношению к которой оценивается устойчивость программ. Показатели устойчивости - это показатели безотказности, но с использованием условных вероятностей. Условием, при котором вычисляются вероятности, является отказ (сбой) в программе или аппаратуре. Для невосстанавливаемых (некорректируемых) программ обобщённым показателем устойчивости служит условная вероятность безотказной работы: где P(A) - вероятность ошибки (сбоя) программы или отказа аппаратуры. Безотказность и устойчивость - динамические характеристики, то есть они характеризуют надёжность ПО в процессе работы. 3. Корректируемость. Этот показатель надёжности ПО аналогичен показателю ремонтопригодности радиоэлектронной аппаратуры, характеризует приспособленность ПО к поиску и устранению ошибок и внесению в него изменений в ходе эксплуатации. Он используется для характеристики восстанавливаемых в ходе эксплуатации программ. Показатели корректируемости: время корректировки 4. Защищённость и долговечность. Дополнительными характеристиками надёжности ПО являются: показатель защищённости от посторонних вмешательств в работу ПО и показатель долговечности, характеризующий свойства программ избегать морального старения при длительном использовании. Защищённость характеризуется вероятностью внесения искажений при постороннем вмешательстве, а долговечность - временем отказа ПО вследствие морального старения. В зависимости от условий применения ПО можно выделить три режима (типа) его работы: Программа не корректируется, и любой отказ является полным, т.е. после отказа ПО не восстанавливается. Основные показатели надёжности для этого режима работы программ - безотказность, устойчивость и защищённость. Программа не корректируется, однако после отказа ПО система продолжает функционировать нормально. Основные показатели надёжности - безотказность, устойчивость, защищённость и долговечность. После каждого отказа ПО корректируется, отлаживается и только после этого снова сдаётся в эксплуатацию. Основные показатели надёжности - безотказность, устойчивость, корректируемость, защищённость, а также потери времени.
16.5 Критерии надёжности сложных комплексов программ.
Для оценки надёжности программ, как и при исследовании характеристик аппаратуры, как правило, приходится ограничиваться интегральными показателями наработки на отказ и средним временем восстановления. Определение остальных показателей сопряжено с большими трудностями, которые обусловлены тем, что для определения показателей надёжности комплексов программ необходимы длительные эксперименты или сложные расчёты при определённых исходных данных. Оценка достоверности результатов и надёжности функционирования комплекса программ представляет собой сложную задачу из-за “проклятия размерности”. Естественным становится статистический подход к анализу надёжности функционирования и статистическая оценка достоверности результатов. Качество отладки определяется интенсивностью (частотой) отказов и значениями ошибок в выходных результатах, полученными за счёт не выявленных ошибок в программах и искажений исходных данных. Интенсивность (частота) отказов в комплексе программ иначе называется как частота проявления ошибок в комплексе программ. Точное определение полного количества ошибок в программе прямыми методами измерения невозможно. Имеются только косвенные пути статистической оценки их полного количества. Такие оценки базируются на построении математических моделей в предположении жёсткой корреляции между общим количеством и проявлениями ошибок в комплексе программ после его отладки в течении времени t, т.е. между следующими параметрами: суммарным количеством ошибок количеством ошибок, выявляемых в единицу времени dn/dt в процессе тестирования и отладки при постоянных усилиях на их проведение; интенсивностью отказов l или числом искажений результатов на выходе комплекса программ вследствие не выявленных ошибок при нормальном функционировании системы в единицу времени. На рис.3.2 показаны зависимости
l
![]()
dn/dt Рис. 3.2
16.6 Математические модели надёжности комплексов программ.
Математические модели позволяют оценивать характеристики ошибок в программах и прогнозировать их надёжность при проектировании и эксплуатации. Модели имеют вероятностный характер, и достоверность прогнозов зависит от точности исходных данных и глубины прогнозирования по времени. Эти математические модели предназначены для оценки: - показателей надёжности комплексов программ в процессе отладки; - количества ошибок, оставшихся не выявленными; - времени, необходимого для обнаружения следующей ошибки в функционирующей программе; - времени, необходимого для выявления всех ошибок с заданной вероятностью. Использование моделей позволяет эффективно и целеустремлённо проводить отладку и испытания комплексов программ, помогает принять рациональное решение о времени прекращения отладочных работ. В настоящее время предложен ряд математических моделей, основными из которых являются: - экспоненциальная модель изменения ошибок в зависимости от времени отладки; - модель, учитывающая дискретно - понижающуюся частоту появления ошибок как линейную функцию времени тестирования и испытаний; - модель, базирующаяся на распределении Вейбула; - модель, основанная на дискретном гипергеометрическом распределении. При обосновании математических моделей выдвигаются некоторые гипотезы о характере проявления ошибок в комплексе программ. Наиболее обоснованными представляются предположения, на которых базируется первая экспоненциальная модель изменения ошибок в процессе отладки и которые заключаются в следующем: 1. Любые ошибки в программе являются независимыми и проявляются в случайные моменты времени. 2. Время работы между ошибками определяется средним временем выполнения команды на данной ЭВМ и средним числом команд, исполняемым между ошибками. Это означает, что интенсивность проявления ошибок при реальном функционировании программы зависит от среднего быстродействия ЭВМ. 3. Выбор отладочных тестов должен быть представительным и случайным, с тем чтобы исключить концентрацию необнаруженных ошибок для некоторых реальных условий функционирования программы. 4. Ошибка, являющаяся причиной искажения результатов, фиксируется и исправляется после завершения тестирования либо вообще не обнаруживается. Из этих свойств следует, что при нормальных условиях эксплуатации количество ошибок, проявляющихся в некотором интервале времени, распределено по закону Пуассона. В результате длительность непрерывной работы между искажениями распределена экспоненциально. Предположим, что в начале отладки комплекса программ при t = 0 в нём содержалось Интенсивность обнаружения ошибок в программе dn/dt и абсолютное количество устранённых ошибок связываются уравнением
Если предположить, что в начале отладки при t = 0 отсутствуют обнаруженные ошибки, то решение уравнения имеет вид Количество оставшихся ошибок в комплексе программ пропорционально интенсивности обнаружения dn/dt с точностью до коэффициента k. Время безотказной работы программ до отказа T или наработка на отказ, который рассматривается как обнаруживаемое искажение программ, данных или вычислительного процесса, нарушающее работоспособность, равно величине, обратной интенсивности обнаружения отказов (ошибок): Если учесть, что до начала тестирования в комплексе программ содержалось Если известны моменты обнаружения ошибок а также выражение для расчёта коэффициента пропорциональности
В результате можно рассчитать число оставшихся в программе ошибок и среднюю наработку на отказ Tср = 1/l, т.е. получить оценку времени до обнаружения следующей ошибки. В процессе отладки и испытаний программ, для повышения наработки на отказ от
Выражение для определения затрат времени Dt на проведение отладки, которые позволяют устранить Dn ошибок и соответственно повысить наработку на отказ от значения Вторая модель построена на основе гипотезы о том, что частота проявления ошибок (интенсивность отказов) линейно зависит от времени испытания
где Для оценки наработки на отказ получается выражение, соответствующее распределению Релея: где Отсюда плотность распределения времени наработки на отказ
Использовав функцию максимального правдоподобия, получим оценку для общего количества ошибок
Особенностью третьей модели является учёт ступенчатого характера изменения надёжности при устранении очередной ошибки. В качестве основной функции рассматривается распределение времени наработки на отказ P(t). Если ошибки не устраняются, то интенсивность отказов является постоянной, что приводит к экспоненциальной модели для распределения: Отсюда плотность распределения наработки на отказ T определяется выражением: где t > 0, l > 0 и 1/l - среднее время наработки на отказ, т.е. Тср=1/l. Здесь Тср - среднее время наработки на отказ. Для аппроксимации изменения интенсивности от времени при обнаружении и устранении ошибок используется функция следующего вида:
Если 0 < b < 1, то интенсивность отказов снижается по мере отладки или в процессе эксплуатации. При таком виде функции l(t) плотность функции распределения наработки на отказ описывается двухпараметрическим распределением Вейбулла:
Распределение Вейбулла достаточно хорошо отражает реальные зависимости при расчёте функции наработки на отказ. Date: 2015-08-06; view: 773; Нарушение авторских прав |