Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Глава 10. Надежность систем с нагруженным резервированием
Рассматривается система, состоящая из одного основного и (n - 1) резервных элементов. При условии, что отказы элементов независимы, отказ системы происходит только при отказе всех n элементов. Структура системы Случайная наработка до отказа: (система работоспособна до тех пор, пока работоспособен хотя бы один элемент). Поскольку отказ системы есть событие, которое заключается в одновременном появлении событий – отказах всех элементов, то · вероятность отказа (ВО):
· вероятность безотказной работы (ВБР):
· математическое ожидание (МО) наработки до отказа: При идентичных элементах системы, т. е. P1(t) = … = Pn(t)
· ВБР:
· ВО:
· МО наработки до отказа: Для системы с экспоненциальной наработкой до отказа каждого из n элементов: Pi(t) = exp(- i t), где i = const показатели безотказности:
Таким образом, при нагруженном резервировании экспоненциальное распределение наработки до отказа не сохраняется. При идентичных n элементах системы МО наработки до отказа: При большом n (n ), T0с 1/ ·(ln n + c), где c = 0.577…. При неидентичных элементах: Для системы с n идентичными элементами P1(t) = … = Pn(t) решаются задачи оптимизации (в различных постановках). 1. Определение числа n элементов системы, при котором вероятность отказа (ВО) системы Qс(t) не будет превосходить заданной Qс. Поскольку Qс(t) = Qin(t), то условие задачи Qin(t) Qс(t). Из приведенного неравенства определяется минимально необходимое число элементов:
2. Определение надежности n элементов системы из условия, чтобы ВО не превышала заданную Qс. Из условия Qin(t) Qс(t), находим ВО I и ВБР Pi(t) 1 - Qi(t). Надежность систем с ограничением по нагрузке Для некоторых систем условия работы таковы, что для работоспособности системы необходимо, чтобы по меньшей мере r элементов из n были работоспособны. Т. е. число необходимых рабочих элементов – r, резервных – (n - r). Отказ системы наступает при условии отказа (n – r + 1) элементов. Если при изменении числа находящихся в работе элементов не наблюдается перегрузки, влияющей на возможность возникновения отказа, то отказы можно считать независимыми. ВБР такой системы определяется с помощью биномиального распределения. Для системы, сохраняющей работоспособность при функционировании r из n элементов, ВБР определяется как сумма r, (r + 1), …, (n – r) элементов:
где Для идентичных элементов с экспоненциальной наработкой Pi(t) = exp(- i t), i = const ( 1 = … = i = … = n) ВБР: Зависимость надежности системы от кратности резервирования
При целой кратности k (r = 1, n = k + 1) для системы с идентичными элементами и экспоненциальной наработкой до отказа: · ВБР системы:
Pс(t) = 1 – (1 - exp(- t))k+1;
· ПРО системы:
fс(t) = - dPс(t)/ dt = (k + 1) (1 - exp(- t))k exp(- t);
· ИО системы:
Полагая элементы системы высоконадежными, т. е. t << 1 (P(t) 1 - t), получены упрощенные выражения:
· ВБР системы: Pс(t) 1 – ( t))k+1; · ПРО системы: fс(t) (k + 1) k+1 tk; · ИО системы: но поскольку t << 1, то ( t)k+1 0, поэтому ИО системы: с (t) (k + 1) k+1 tk = n · n · tn-1, где n = k + 1. Полученное выражение с (t) свидетельствует о том, что при = const элементов, ИО системы зависит от наработки, т. е. распределение наработки до отказа системы не подчиняется экспоненциальному распределению. На рис. 1 приведены зависимости изменения Pс( t) и с / ( t) из которых следует, что: · увеличение кратности резервирования k повышает надежность (Pс возрастает, с / 0); · резервирование наиболее эффективно на начальном участке работы системы (при t T0), т. е. Рис. 10.1 Из графика с / ( t) видно, что при t = (3 4)T0 = (3 4) 1/ , с приближается к . Поскольку средняя наработка до отказа системы при идентичных элементах ( = const): то выигрыш в средней наработке T0с снижается по мере увеличения кратности резервирования. Например, при k = 1 T0с = T0 ·(1 + 1/2) = 3/2T0 (увеличение T0с на 50%); при k = 2 T0с= T0 ·(1 + 1/2 + 1/3) = 11/6T0 (увеличение T0с на 83%); при k = 3 T0с= 25/12T0 (увеличение T0сна 108%). Таким образом, динамика роста T0с составляет: 50, 33 и 25%, т. е. уменьшается.
Контрольные вопросы: 1. Чем отличаются системы с нагруженным резервированием с целой и дробной кратностью? Привести расчетные выражения показателей безотказности? 2. Какой закон распределения наработки до отказа будет у системы с нагруженным резервированием, если законы распределения наработки до отказа составляющих ее элементов – экспоненциальные? 3. Какие задачи оптимизации решаются и в чем они состоят для систем с нагруженным резервом? 4. Как определяется вероятность безотказной работы системы с нагруженным резервированием и дробной кратностью? 5. При каких условиях наиболее эффективно применение нагруженного резервирования? Date: 2015-08-06; view: 472; Нарушение авторских прав |