Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Задача о размножении кроликов
Сколько пар кроликов будет у нас через год, если в январе у нас была одна пара, которая каждый месяц производит на свет другую пару, начиная с марта, а каждая новая пара, в свою очередь, производит собственное потомство, начиная со второго месяца своего существования? Фибоначчи составил таблицу, в графе «Итого» подсчитывая число пар в конце каждого месяца. Беглый взгляд на эту таблицу показывает странную закономерность в последовательности: каждое число является суммой двух предыдущих. В конце -го месяца количество пар кроликов будет равно количеству пар в предыдущем месяце плюс количество новорожденных пар, которых будет столько же, сколько пар было два месяца назад. Таким образом: Ряд чисел 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55 и т. д. известен как ряд Фибоначчи. Каждое число, начиная с третьего, равно сумме двух предыдущих 2 + 3 = 5; 3 + 5 = 8; 5 + 8 = 13; 8 + 13 = 21; 13 + 21 = 34 и т. д., а отношение смежных чисел ряда приближается к отношению золотого деления. Так, 21: 34 = 0,617, а 34: 55 = 0, 618. Это отношение обозначается символом Ф. Только это отношение – 0, 618: 0, 382 –дает непрерывное деление отрезка прямой в золотой пропорции. Он может увеличиваться или уменьшаться до бесконечности, а меньший отрезок всегда будет так относиться к большему, как больший ко всему. Формула общего члена последовательности была обнаружена в 1843 г. Французским математиком Жаком Бине:
Date: 2015-07-27; view: 2453; Нарушение авторских прав |