Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Разработка структурной схемы ульразвукового измерителя скорости кровотока





 

Особенность УЗДП состоит в использовании в качестве зондирующего сигнала механических вибраций, передаваемых в тело человека. В процессе работы прибора производятся механические колебания элементов тканей на поверхности тела. Распространение ультразвука зависит от плотности, структуры, однородности, вязкости и сжимаемости тканей. Интегративным отражением этих свойств является акустический импеданс(АИ) ткани. АИ характеризует степень сопротивления среды распространению УЗ. АИ= d*c, где d – плотность среды (кг\м3), с – скорость распространения УЗ в среде. Циклическое движение элементов тканей на поверхности, производимое пьезоэлектрической пластиной, вызывает свою очередь, силовые воздействия на элементы тканей с более глубоких слоев, и, соответственно, их циклическое перемещение и т.д. Таким образом, за счет передачи силовых воздействий сжатия-растяжения между соседними элементами тканей возникает передача механических вибраций в тело человека, называемое УЗ волной [7].

В настоящее время в УЗДГ применяется УЗ с частотами до 20 МГц, Так, например, при УЗ обследований головы используют самые низкие частоты порядка 0.5 - 2 МГц, при обследовании периферических сосудов - до 10 МГц, в офтальмологии - до 15 МГц. А чем выше частота, тем ниже минимальная регистрируемая скорость, поэтому,применяемые в настоящее время УЗДП, имеют ограничения на минимальную регистрируемую скорость.

Указанное ограничение возникает по двум причинам:

* из-за зависимости доплеровского сдвига от частоты излучения;

* из-за необходимости фильтрации принимаемого сигнала.

Допплеровский сдвиг (разность частот излучаемого и принимаемого сигнала) прямо пропорционален частоте УЗ сигнала, на которой проводится исследование кровотока - т.е. чем ниже частота УЗ, тем меньше допплеровский сдвиг, получаемый при обследовании одного и того же кровотока на различных частотах.

Ограничения, налагаемые на частотный диапазон существующих допплеровских измерителей скорости кровотока, обусловлены, в основном, двумя причинами: сложностью получения приемлемых параметров УЗ преобразователя, выполненного на основе пьезокерамики, для работы на частотах свыше 10 МГц. Толщина пьезокерамической пластины, используемой в качестве активного элемента, составляет половину длины волны, и на частотах свыше 10 МГц становится меньше 0.2 мм. Из-за существования пор в объеме керамики, напыляемые на противоположные поверхности пьезокерамической пластины электрические контакты образуют электрические соединения друг с другом через эти поры, и такой преобразователь становится непригодным для работы; существующие в настоящее время схемы построения блоков обработки сигналов УЗ преобразователей (в диапазоне до 16 МГц) предполагают производить эту обработку непосредственно в ВЧ области, что приводит к усложнению схемы, ужесточению требований к параметрам ЭРЭ и, как следствие, к заметному удорожанию всего допплеровского комплекса.

Рисунок 11

где 1 - Малошумящий усилитель 2 - НЧ фильтр 3 - Фазовый детектор 4 - Генератор 2 МГц 5 - Усилитель 6 - АЦП

Вырабатываемый задающим генератором 4 сигнал подается на вход излучающего преобразователя и излучается в виде акустической волны, сфокусированной по направлению исследуемого сосуда. Отраженный сигнал, несущий информацию о движении форменных элементов крови в данном сосуде, преобразуется приемным элементом УЗ датчика, расположенным вокруг излучающего, усиливается усилителем с малым уровнем шумов 1 и детектируется фазовым детектором 3, управляемым задающим генератором 4. Отражение УЗ происходит на границе раздела сред с различными АИ, причем величина отражения УЗ прямо пропорциональна разности АИ сред. Генератор устройства собран на транзисторе VT1. Рабочая точка генератора определяется сопротивлением резисторов R8C4. Максимально достигаемая с помощью генератора мощность ограничена величиной тока высокой частоты (2 МГц), проходящей через кварц. Слишком большой ток высокой частоты нагревает кристалл, что отрицательно сказывается на стабилизации частоты. Поэтому генератор рассчитан на небольшую мощность (порядка 8мВт), но при высокой стабильности колебаний. Требуемую мощность получают в следующем каскаде, собранном на транзисторе VT2, по схеме с разделенной нагрузкой. Рабочая точка каскада определяется соотношением резисторов R10R11. В цепь эмиттера включен излучающий пьезоэлемент. В цепь коллектора параллельный колебательный контур, настроенный на частоту генератора (2 МГц) с которого опорный сигнал поступает на фазовый детектор.

Усиленный малошумящим усилителем 1 сигнал далее фильтруется полосовым фильтром 2 для устранения низкочастотных помех, возникающих вследствие отражения УЗ сигнала от медленно движущихся стенок сосуда (амплитуда сигнала от которых на несколько порядков выше амплитуды полезного допплеровского сигнала) и высокочастотного шума и подается затем на усилитель 5 и далее на АЦП.

Применение ПК в медицинской диагностической аппаратуре не толькоимеет своей целью универсализацию используемого врачами оборудования, но и снижение его стоимости, что особенно актуально дан российской медицины. Главная проблема, которую решает применение ПК в разрабатываемом приборе - это возможность построения аппаратуры обработки данных с минимальными затратами. Возможности современных процессоров позволяют производить сложные вычисления в реальном масштабе времени, что раньше было под силу только специализированным цифровым процессорам обработки сигналов (ЦПОС) [8].

Date: 2015-07-27; view: 541; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.006 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию