Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Симплексный метод решения задачи линейного программирования
Для решения ЗЛП существует универсальный метод – метод последовательного улучшения плана или симплекс-метод, который состоит из двух вычислительных процедур: симплекс-метода с естественным базисом и симплекс-метода с искусственным базисом (М-метод). Выбор конкретной вычислительной процедуры осуществляется после приведения исходной ЗЛП к каноническому виду (КЗЛП):
В теории линейного программирования (ЛП) показано, что оптимальное решение ЗЛП связано с угловыми (крайними) точками многогранника решений, которым отвечают опорные планы (неотрицательные базисные решения системы уравнений КЗЛП). Каждый из опорных планов определяется системой m линейно независимых векторов, содержащихся в данной системе из n векторов А1, А2,…, Аn. Верхняя граница количества опорных планов, содержащихся в данной задаче, определяется числом сочетаний Сnm. Задача 3. Получить решение по модели задачи об оптимальном использовании ограниченных ресурсов (решить ЗЛП):
Приведем задачу к каноническому виду путем введения дополнительных переменных x 3 и x4:
Найдем все опорные планы КЗЛП. Используя метод Жордана-Гаусса выписываем все базисные решения системы уравнений:
Последовательно будем иметь: Х1=(0,0,300,150); Х2=(150,0,150,0); Х3=(0,150,-150,0); Х4=(75,75,0,0); Х5=(300,0,0,-150); Х6=(0,100,0,50). Среди этих базисных решений четыре опорных: Х1=(0,0,300,150); Х2=(150,0,150,0); Х4=(75,75,0,0); Х6=(0,100,0,50). Указанным опорным планам на рис. 5 отвечают соответственно следующие угловые точки и значения ЦФ в них: А(0,0) и f(0,0)=0; Д(150,0) и f(150,0)=300; С(75,75) и f(75,75)=375; В(0,100) и f(0,100)=300. Согласно теории ЛП оптимальное решение содержится среди опорных планов.
Рис.5
Таким образом, максимальное значение, равное 375, целевая функция f(x1,x2) достигает на опорном плане Х4=(75,75,0,0), т.е. оптимальное решение рассматриваемой ЗЛП: x1 = 75, x2 = 75. Понятно, что при больших m и n найти оптимальный план, перебирая указанным выше способом (прямым перебором) все опорные ЗЛП весьма трудно. Поэтому необходимо иметь схему, позволяющую осуществлять упорядоченный переход от одного опорного плана к другому. Такой схемой является симплексный метод. Date: 2015-07-25; view: 489; Нарушение авторских прав |