![]() Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
![]() Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
![]() |
Модель задачи
Введем следующие обозначения: х1 – число женских костюмов; x2 – число мужских костюмов. Прибыль от реализации женских костюмов составляет 10х1, а от реализации мужских 20х2, т.е. необходимо максимизировать целевую функцию
f(x) = 10´ х 1 + 20´ х 2 -> max
Ограничения задачи имеют вид:
Первое ограничение по труду х1 + х2 £ 150. Прямая х1 + х2 = 150 проходит через точки (150, 0) и (0, 150).
Рис. 2. Решением первого неравенства является нижняя полуплоскость
Второе ограничение по лавсану 2
Рис. 3. Заштрихована область допустимых решений.
Для определения направления движения к оптимуму построим вектор-градиент Ñ, координаты которого являются частными производными целевой функции, т.е.
Что бы построить этот вектор, нужно соединить точку (10;20) с началом координат. При максимизации целевой функции необходимо двигаться в направлении вектора-градиента, а при минимизации – в противоположном направлении. Для удобства можно строить вектор, пропорциональный вектору Ñ. Так, на рис. 2.1.6. изображен вектор градиент (30;60). В нашем случае движение линии уровня будем осуществлять до ее выхода из области допустимых решений. в крайней, угловой точке достигается максимум целевой функции. Для нахождения координат этой точки достаточно решить два уравнения прямых, получаемых из соответствующих ограничений и дающих в пересечении точку максимума:
х1 + 3.5 х1 + х2 = 150
Отсюда легко записать решение исходной ЗЛП: max f(x) = 2300 и достигается при x1=70 и x2=80 (рис. 4.)
Задача 2. Для изготовления двух видов продукции А1 и А2 используют три вида ресурсов S1, S2, S3, запасы которых составляют 18, 15 и 5 усл. ед. Расход ресурсов на 1 ед. продукции приведен в таблице:
Необходимо составить такой план производства продукции, который обеспечит наибольшую прибыль от ее реализации. Составим экономико-математическую модель (ЭММ) задачи. Пусть надо выпустить изделий A1 – x1 шт., а изделий А2 – x2 шт. Тогда прибыль Date: 2015-07-25; view: 600; Нарушение авторских прав |