Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Показатели вариации
Одних только средних недостаточно для оценки тех или иных явлений, так как средние уравнивают, сглаживают индивидуальные особенности отдельных единиц совокупности, показывают типичный для данных условий уровень варьирующих признаков, и тем самым могут затушевывать различные тенденции в развитии. В этом случае исчисляют показатели вариации, характеризующие средние отклонения каждой единицы совокупности от среднего значения признака в целом. Вариация имеет объективный характер и помогает познать сущность изучаемого явления. Для измерения вариации в статистике применяют несколько способов, описательная характеристика которых представлена в табл. 5.6. Дисперсия имеет ряд математических свойств, упрощающих технику ее расчета. 1. Если из всех вариант отнять какое-то постоянное число А, то дисперсия от этого не изменится. 2. Если все значения вариант разделить на какое-то постоянное число h, то дисперсия уменьшится от этого в h2 раз, а среднее квадратическое отклонение – в h раз. Таблица 5.6. Показатели вариации
Методика расчета показателя дисперсии упрощенными способами показана на рис. 5.4. Отметим, что способ моментов применим в том случае, если задан интервальный ряд с равными интервалами, а способ разности применяется в любых рядах распределения: дискретных и интервальных с равными и неравными интервалами. 20. Вариация признака определяется различными факторами, в результате чего различают общую дисперсию, межгрупповую дисперсию и внутригрупповую дисперсию. Общая дисперсия (σ2) измеряет вариацию признака во всей совокупности под влиянием всех факторов, обусловивших эту вариацию. Вместе с тем, благодаря методу группировок можно выделить и измерить вариацию, обусловленную группировочным признаком, и вариацию, возникающую под влиянием неучтенных факторов. Межгрупповая дисперсия (σ2м.гр) характеризует систематическую вариацию, т. е. различия в величине изучаемого признака, возникающие под влиянием признака – фактора, положенного в основание группировки.
Рис.5.4. Упрощенные способы расчета дисперсии
, где k – количество групп, на которые разбита вся совокупность; mj – количество объектов, наблюдений, включенных в группу j; – среднее значение признака по группе j; – общее среднее значение признака. Внутригрупповая дисперсия (σ2j,вн.гр) отражает случайную вариацию, т.е. часть вариации, возникающую под влиянием неучтенных факторов и независящую от признака фактора, положенного в основание группировки.
, или, на основе метода разностей , где xij – значение i -ой варианты в группе j. Если в сформированных группах отдельные данные встречаются не один раз, то для расчета внутригрупповой дисперсии используется формула средней арифметической взвешенной. Среднее значение внутригрупповых дисперсий рассчитывается по формуле: . Существует закон согласно которому, общая дисперсия, возникающая под воздействием всех факторов, равна сумме дисперсии, возникающей за счет группировочного признака и дисперсии, появляющейся под влиянием всех прочих факторов. Этот закон связывает три вида дисперсии.
Правило сложения дисперсий: . Правило сложения дисперсии широко применяется при исчислении тесноты связей между признаками (факторным и результативным). Для этого определяют эмпирический коэффициент детерминации и эмпирическое корреляционное отношение. Эмпирический коэффициент детерминации (η 2) показывает, какая доля всей вариации признака обусловлена признаком, положенным в основание группировки. (η – греческая буква «эта»). . Эмпирическое корреляционное отношение (η) показывает тесноту связи между признаками - группировочным и результативным. .
Оно изменяется в пределах от 0 до 1. Если η = 0, то группировочный признак не оказывает влияния на результативный, если η =1,то результативный признак изменяется только в зависимости от признака, положенного в основание группировки, а влияние прочих факторов равно нулю. Характеристика связи между признаками при соответствующих значениях эмпирического корреляционного отношения приведена в табл. 5.7. Таблица 5.7 Качественная оценка связи между признаками
Date: 2015-07-27; view: 552; Нарушение авторских прав |