![]() Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать неотразимый комплимент
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории: АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника |
Гравитационный потенциал однородного шара
Гравитационный потенциал однородного шара во внешней точке ничем не отличается от потенциала шара, со сферически симметричным распределением массы, поэтому мы этот случай рассматривать не будем. Гравитационный потенциал однородного шара во внутренней точке может быть вычислен по формуле (3.9), в которой нужно положить плотность постоянной величине. Имеем следовательно
В центре шара ( Определим силу притяжения во внутренней точке:
Таким образом: сила притяжения внутренней материальной точки со стороны масс сферического тела линейно растет по абсолютной величине с расстоянием от центра шара и направлена к его центру. Другими словами, закон Ньютона, или, как еще его называют, закон обратных квадратов, превращается в закон Гука -- закон прямой пропорциональности "упругой" силы от величины отклонения тела от положения равновесия. Нужно отметить, что если равномерно распределенная притягивающая масса занимает объем, ограниченный эллипсоидальной поверхностью, то и в этом случае вместо закона Ньютона следует брать закон Гука. Покажем теперь, что во внутренней точке гравитационный потенциал подчиняется закону Пуассона: Будем считать, что мы имеем дело с произвольным телом, ограниченным замкнутой поверхностью где Поскольку При переходе точки
Гравитационное поле планеты Все планеты Солнечной системы имеют форму, близкую к сферической. Поэтому, гравитационное поле шара можно рассматривать, как первое приближение к гравитационному полю планеты. Во втором приближении можно учесть тот факт, что некоторые планеты, в том числе и Земля, гораздо лучше могут быть представлены эллипсоидом вращения, чем шаром. В третьем приближении мы можем учесть и некоторые особенности в распределении масс внутри планеты и т.д. Короче говоря, гравитационное поле планеты обычно представляют рядом по шаровым функциям. В зависимости от решаемой задачи, предъявляются разные требования к детальности исходных данных, к числу членов разложения и к числу исходных параметров. Итак, будем считать, что наша фиксированная точка
Поскольку точка Функцией, производящей полиномы Лежандра, называется функция где Каждый следующий полином можно вычислить, пользуясь рекуррентной формулой Существует и общая формула для полиномов Лежандра. Это так называемая формула Родрига Вернемся снова к нашему интегралу (3.13). Вынесем из под корня величину Под знак интеграла теперь входит производящая функция полиномов Лежандра. Разлагая подынтегральное выражение в степенной ряд относительно отношения
Представим полученное разложение в виде где
Полученный ряд называют рядом Лапласа, а соответствующие функции Определим первые три функции Лапласа. Чтобы выполнить интегрирование, нам нужно выбрать системы координат. Допустим, что точка Первый член разложения. Согласно формуле (3.15), имеем
Полученная шаровая функция дает лишь массу планеты. Если ограничиваться только первым членом разложения, то это равносильно тому, что планета отождествляется с шаром со сферически симметрично распределенными массами или с материальной точкой. Второй член разложения Следующая шаровая функция имеет вид Из теоретической механики известно, что последний интеграл определяет радиус-вектор центра масс: Следовательно, линейная шаровая функция выглядит следующим образом
В астрономических приложениях этот член разложения часто не принимают во внимание: предполагают, что начало системы координат выбрано точно в центре масс. Однако, более детальный анализ гравитационных полей планет иногда приводит к выводу о смещении центра масс по отношении к геометрическому центру объема планеты. Третий член разложения Для Заметим, что После необходимых преобразований, полученную формулу можно привести к виду
где использованы следующие обозначения:
а Как следует из теоретической механики,
Таким образом, шаровая функция нулевой степени есть масса планеты (момент инерции нулевого порядка), первой степени определяется через координаты центра масс (момент инерции первого порядка) шаровая функция второй степени определяется через моменты инерции второго порядка. Продолжая рассуждения, мы убедимся в том, с увеличением степени шаровой функции, увеличивается и порядок моментов инерции планеты, через которые эти шаровые функции определяются. Поэтому говорят, что члены разложения гравитационного потенциала высокого порядка определяются через мультипольные моменты ее массы. В задачах небесной механики часто используются следующие упрощения представления гравитационного потенциала, в предположении, что -- начало координат совпадает с центром масс, -- направления осей параллельны главным осям инерции, -- фигура планеты -- тело вращения. При этих предположениях координаты центра масс и произведения инерции равны нулю, а Однако, Как мы видели, величина поэтому Если ограничиться только этими членами разложения, то гравитационный потенциал планеты можно записать в виде
Формула (3.21) показывает, что напряженность гравитационного поля в точке
Принимая во внимание другие члены разложения потенциала, но сохраняя главное условие -- внутреннее строение планеты соответствует телу вращения -- мы можем получить формулу для гравитационного потенциала, содержащую полиномы Лежандра более высоких степеней
Коэффициенты разложения В качестве характеристики планеты используют также безразмерный момент инерции, который определяется следующим образом В заключении раздела приведем численные значения фундаментальных постоянных для некоторых планет и Луны.
Реально гравитационное поле во внешнем пространстве зависит не только от полярного расстояния или широты точки
Функции
Обратим внимание на внутреннюю сумму в формуле (3.24). Ее верхний предел равен Гармоники называются зональными, если их значения изменяются только с широтой. Это будет иметь место при Гармоники называются секториальными, если их знак может изменяться только с долготой. Это имеет место при Поскольку косинус широты не меняет знака, то внутри одного сектора не изменяет знака и сферическая гармоника. Шар оказывается расчлененным на сектора -- полосы, которые соединяют северный и южный полюса. Гармоники, для которых Определение массы планеты Первый член разложения гравитационного потенциала имеет вид Пусть
Полученная формула есть не что иное, как третий закон Кеплера: квадраты периодов обращения планет, относятся так же, как кубы их расстояний до центрального тела (Солнца). Правда, формулу (3.26) мы получили для частного случая кругового движения, хотя в небесной механике доказано, что она справедлива и для эллиптического движения. В этом случае под Формула (3.26) дает возможность определить массу планеты только в том случае, когда гравитационная постоянная нам известна. Ее определяют с помощью физического эксперимента. К сожалению, точность этих экспериментов пока еще не достаточно высока, хотя со времени Кавендиша -- английского ученого, который одним из первых определил гравитационную постоянную, точность ее определения выросла на два порядка за 150 лет. Сейчас принято Date: 2015-07-25; view: 2238; Нарушение авторских прав |