Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Задача 3. Завод в среднем дает 27% продукции высшего качества и 70% первого сорта. Найти вероятность того, что наудачу взятое изделие будет или высшего качества или первого сорта
Решение: Обозначим интересующее нас событие буквой С – наудачу взятое изделие будет высшего качества или первого сорта. Рассмотрим вспомогательные события, вероятности которых заданы в условии задачи. Пусть событие А – взятое изделие высшего качества, тогда Р(А)= 0,27; событие В – взятое изделие первого сорта, тогда Р(В)= 0,7. Событие С=А+В, причем А и В – несовместные события. Вероятность события С можно подсчитать по формуле (3) сложения вероятностей двух несовместных событий Р(С)=Р(А+В)=Р(А)+Р(В). Итак, Р(С)= 0,27+0,7=0,97. Задача 4. Рабочий обслуживает два станка, работающих независимо друг от друга. Вероятность того, что в течение часа станок не потребует внимания рабочего, равна для первого станка 0,8, а для второго 0,7. Вычислить вероятность того, что хотя бы один из двух станков не потребует внимания рабочего в течении часа. Решение: Обозначаем интересующее нас событие, состоящее в том, что хотя бы один из станков не потребует внимания рабочего в течение часа, буквой С. Событие С означает, что либо первый станок не потребует внимания рабочего (событие А), либо второй станок не потребует внимания рабочего (событие В), возможно, что оба станка одновременно не потребуют внимания рабочего. Следовательно, событие С=А+В, причем А и В – совместные события. Для определения вероятности события С используем формулу (4) сложения вероятностей двух совместных событий: Р(С)=Р(А+В)=Р(А)+Р(В) –Р(АВ). По условию Р(А)= 0,8, Р(В)= 0,7. Событие А и В – независимые, поэтому Р(АВ)=Р(А)Р(В) – формула вероятности произведения двух независимых событий. Таким образом, Р(С)= 0,8+0,7-0,8•0,7=0,94. Задача 5. Студент пришел на экзамен, зная лишь 20 вопросов из 25 вопросов программы. Экзаменатор задал студенту наугад 2 вопроса. Найти вероятность того, что студент знает оба вопроса. Решение: Введем обозначения событий: А – студент знает первый вопрос; В – студент знает второй вопрос. Вероятность того, что студент знает первый вопрос можно подсчитать используя формулу (1) классического определения вероятности события, в которой п = 25 – общее число вопросов, m= 20 - число вопросов, ответы на которые студент знает. Р (А) = По той же формуле (1) можно подсчитать условную вероятность того, что студент знает ответ на второй вопрос при условии, что он ответил правильно на первый вопрос. Но n = 24, так как студент ответил на первый вопрос и он не присутствует среди предложенных; m = 19, так как на один, известный студенту вопрос, он представил правильный ответ. P(B/A) = . Вероятность же интересующего нас события подсчитаем по формуле (5): Р(А·В) = P(A)·P(A/B). Итак, Р (АВ) = . Задача 6. В некоторой отрасли 25% продукции производится предприятием I, 30% продукции – предприятием II, а остальная часть продукции – предприятием III. На предприятии I в брак идет 1% продукции, на предприятии II – 2% продукции, а на предприятии III – 1,5%. Найти вероятность того, что купленная единица продукции оказалась браком. Какова вероятность того, что она произведена предприятием I? Решение: Обозначим событие: А – купленная единица продукции оказалась браком. Рассмотрим гипотезы: Н1 – изделие произведено предприятием I; Н2 – изделие произведено предприятием II, Н3 – изделие произведено предприятием III. Тогда вероятность Р (Н1) = 0,25; Р (Н2) = 0,30; Р (Н3) = 1- (0,25 + 0,30) = 0,45. Последняя вероятность подсчитана из условия: Р (Н1)+ Р (Н2)+ Р (Н3) = = 1, так как Н1, Н2, Н3 образуют полную группу несовместных событий. Условные вероятности события А при этих гипотезах соответственно равны: Р (А/Н1) = 0,01; Р (А/Н2) = 0,02; Р (А/Н3) = 0,015. Используем формулу полной вероятности: Р (А) = Р (Н1) Р (А/Н1) + Р (Н2) Р (А/Н2)+ Р (Н3) Р (А/Н3), тогда Р(А)= 0,25·0,01 + 0,30·0,02 + 0,45·0,015 = 0,01525 0,015. Вероятность того, что купленная единица произведена предприятием I, найдем по формуле Байеса: Р (Н1/A) = , тогда Р (Н1/A)= Таким образом, из всех бракованных изделий отрасли в среднем 16% выпускается предприятием I. 3. Схема Бернулли повторных независимых испытаний Если произведена серия из п независимых испытаний, результатом каждого из которых является появление события А или противоположного ему события Ā, причем вероятность появления события А в каждом испытании одна и таже, и равна р, а Р (Ā) = 1 –р = q, то имеет место схема Бернулли. Формула Бернулли:
где m= 0,1,2,..., n определяет вероятность того, что в n испытаниях Бернулли событие А появится m раз. Задача 7. Машина – экзаменатор содержит 10 вопросов, на каждые из которых предлагается 4 варианта ответов. Положительная оценка ставится машиной в том случае, когда экзаменующийся отвечает правильно не менее, чем на 7 вопросов. Какова вероятность ответить правильно на 5 вопросов? Какова вероятность получения положительной оценки, выбирая ответ наудачу? Решение: Всего вопросов n= 10. Вероятность ответить на вопрос правильно p= , так как на каждый вопрос предлагается 4 варианта ответов, среди которых один правильный. Вероятность ответить правильно на 5 вопросов из данных 10 можно подсчитать на формуле Бернулли (10), так как имеем дело со схемой Бернулли. n= 10, т= 5, p= , q= 1– р, то есть q= , Р10 (5) = = = ≈ 0,0584. Обозначим через В событие, состоящее в получении положительной оценки, тогда В=В7+В8+В9+В10= Вi, где событие Вi – экзаменующийся ответит правильно на i вопросов. Вероятность события В. Р(В)=Р(В7)+Р(В8)+Р(В9)+Р(В10)=С710 р7 q3+С810 р8 q2+ С910 р9 q1+ С1010 р10 q0 = ()7()3+ ()8()2+ ()9()1+ ()10()0= + + + = (4·10·34+5·34+10·3+1) ≈0,0035. Date: 2015-07-22; view: 6613; Нарушение авторских прав |