Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Задачи с ограничениями-равенствами
Если линейная система ограничений содержит только ограничения-равенства, то задача записывается в следующем виде. Найти: min F(x) при Ах = b, где А — заданная матрица (m х n), b — заданный вектор, а х — неизвестный вектор с координатами хi (i = 1, 2,...,n). Относительно F(x) сохраним все те же предположения гладкости, что и в задачах безусловной оптимизации. Число строк матрицы А меньше числа ее столбцов (m < n) и строки предполагаются линейно независимыми, так как их линейная зависимость означала бы либо несовместность системы (отсутствие решений), либо наличие лишних ограничений, которые можно отбросить, не изменив решение задачи. Рассматриваемая нами задача может быть сведена к задаче безусловной минимизации с помощью множителей Лагранжа. При этом ограничения исчезают, но для каждого из них вводится неизвестный множитель Лагранжа λi (i = 1, 2,..., m) и целевая функция приобретает вид: Здесь аi, — i-ая строка матрицы А, так что ((aiT,x) – bi) — это фактически левая часть i-oro ограничения-равенства, если систему переписать в виде Ах - b = 0. Конечно, как и при линейной целевой функции, можно было бы попытаться исключить m переменных из системы и подставить их выражения через оставшиеся переменные в целевую функцию. При этом уменьшилась бы размерность задачи и исчезли бы ограничения. Но для этого требуется большой объем вычислений, и нелинейная целевая функция не становится проще. Введение множителей Лагранжа увеличивает число переменных (их стало n + m), но дает возможность применить любой из методов безусловной минимизации. Date: 2015-07-10; view: 472; Нарушение авторских прав |