Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Радиотехнические средства обеспечения посадки самолетов





 

Общие положения

 

С применением приводных радиостанций и бортовых радиокомпасов появилась возможность безопасного выполнения полетов в облаках и за облаками, так как с их помощью стало возможным определять необходимое направление полета самолета. Полеты по маршрутам стали выполняться со значительно возросшей точностью и надежностью по сравнению с полетами при использовании летчиком или штурманом только счисления пути по курсу, скорости и времени полета. Привод самолета на аэродром посадки и построение предпосадочного маневра стали осуществляться без использования наземных ориентиров. Новое качественное развитие получила методика приборного пилотирования. Появление радиолокационных станций также существенно повысило безопасность полетов.

С дальнейшим развитием авиации и усложнением стоящих перед ней задач возросли требования к всепогодности ее применения. Все более и более настойчиво в качестве первоочередного выдвигалось требование к повышению точности выдерживания траектории полета, особенно при заходе на посадку, возникла необходимость автоматизации управления самолетом, оперативного управления воздушным движением и т.д. Все эти проблемы могли быть успешно решены только на основе применения качественно новой аппаратуры, такой, как радиотехническая система ближней навигации (РСБН) и системы инструментальной посадки, а также на основе комплексного использования различных типов наземной и бортовой аппаратуры навигации и посадки.

Метеоминимум (если не учитывать уровень натренированности летчика) зависит от двух основных факторов: во-первых, от того, какую точность полета по необходимой траектории обеспечивают технические средства захода на посадку, и, во-вторых, от того, каковы маневренные возможности самолета для устранения ошибки захода после установления летчиком визуального контакта с земными ориентирами и ВПП аэродрома.

Чем меньше скорость самолета при заходе на посадку, тем (в общем случае) лучше маневренность, то есть меньше радиус разворота и, следовательно, при прочих равных условиях ниже допустимый метеоминимум. Меньшая скорость обеспечивает также больший резерв времени летчику после выхода из облаков.

Однако решающее значение имеет точность системы, обеспечивающей заход на посадку.

Уже довольно давно всеобщее признание у летного состава многоместных самолетов получили достаточно точные радиотехнические системы ближней навигации РСБН-2Н и РСБН-4Н. Для обеспечения захода на посадку были созданы и внедрены курсоглиссадные системы посадки, такие, как СП-50, СП-50М, СП-68, СП-70, а в последнее время – более мобильные и менее сложные в эксплуатации системы ПРМГ-4, ПРМГ-4К, ПРМГ-4КМ и ПРМГ-5. С точки зрения летчика, воспринимающего информацию о положении своего самолета относительно линий курса и глиссады, эти системы совершенно одинаковы. Следует, однако, подчеркнуть, что системы типа ПРМГ обеспечивают летчика информацией не только о курсе и глиссаде, но и о текущей дальности до начала взлетно-посадочной полосы. Это является существенным преимуществом системы ПРМГ, ибо позволяет летчику контролировать правильность снижения самолета по глиссаде и регулировать скорость полета в зависимости от удаления до ВПП.

Радиолокационные системы типа РСП используются для обеспечения посадки самолетов, не оборудованных инструментальными системами навигации и посадки, а также в качестве средств контроля за заходящими на посадку самолетами и оказания помощи летчику.

В дальнейшем будут рассмотрены системы посадки только туда ПРМГ-4, получившие в последнее время наиболее широкое распространение.

Внедрение инструментальных систем посадки и последующая автоматизация процессов управления самолетом существенно повышают качество и надежность захода на посадку (вследствие высокой точности) и поэтому являются реальной основой снижения существующих метеоминимумов.

Поясним некоторые термины и определения общего характера, относящиеся к системам инструментальной посадки, которые необходимы для уяснения принципа действия аппаратуры. К числу таких терминов и определений относятся:

– система инструментальной посадки самолетов;

– зона действия и рабочая область системы;

– крутизна характеристики;

– линия курса и линия глиссады.

Система инструментальной посадки самолетов – это комплекс наземного и бортового оборудования, предназначенного для обеспечения летчика, а в общем случае – бортовой системы управления непрерывной информацией о текущем положении самолета относительно линии курса, глиссады планирования и о дальности до начала ВПП.

В состав наземного оборудования системы инструментальной посадки входят:

– курсовой радиомаяк;

– глиссадный радиомаяк;

– ретранслятор дальномера;

– имитационная контрольно-поверочная аппара­тура;

– аппаратура дистанционного управления работой радиомаяков с командно-диспетчерского пункта.

В состав бортового оборудования системы инструментальной посадки входят:

– бортовая приемопередающая антенна;

– приемные устройства сигналов курсового и глиссадного радиомаяков, а также ответных сигналов ретранслятора дальномера;

– стрелочные индикаторы положения с флажковыми сигнализаторами (бленкерами);

– радиодальномер со счетчиком текущей дальности.

Кроме того, в состав бортового оборудования инструментальной посадки современных самолетов входит аппаратура директорного и автоматического управления. В аппаратуре директорного и автоматического управления используются не только сигналы наземной курсоглиссадной группы, но и сигналы курсовой (КС) и воздушной (СВС) бортовых систем.

Далее будет отмечено, что при заходе самолета на посадку при любом способе управления используется также информация от радиокомпаса и указателя вертикальной скорости.

Таким образом, система инструментальной посадки самолетов состоит из разнообразного наземного и бортового оборудования, предназначенного для обеспечения успешной посадки самолета.

Зона действия системы инструментальной посадки – это область пространства перед взлетно-посадочной полосой, в которой сигналы радиомаяков содержат информацию о положении самолета относительно линии курса и глиссады снижения. Зона действия определяется дальностью приема сигналов радиомаяков и ее угловыми размерами в горизонтальной и вертикальной плоскостях относительно оси ВПП. Хотя зона действия зависит от конструктивных и электрических характеристик радиомаяка (курсового и глиссадного) и от общей, и угловой чувствительности бортовых приемных устройств, ее считают характеристикой наземного оборудования. Объясняется это тем, что при измерениях зоны действия параметры бортового оборудования приводится к вполне определенным стандартизированным значениям.

Наземным оборудованием в пространстве создаются:

– зона действия курсового радиомаяка;

– зона действия глиссадного радиомаяка;

– зона действия ретранслятора дальномера.

На рис. 1 показаны зоны действия курсового а и глиссадного б радиомаяков в вертикальной и горизонтальной плоскостях.

Р а б о ч а я о б л а с т ь с и с т е м ы инструментальной посадки – это центральная область пространства внутри зоны действия, ограниченная телесным углом, в котором с заданной точностью обеспечивается пропорциональная (линейная) зависимость между отклонениями самолета от линий курса и глиссады и выходными токами бортовых приемных устройств (рис. 2, а).

Рабочая область системы независимо от места установки маяка относительно ВПП и направления ее оси исчисляется от торца ВПП в сторону, откуда выполняется заход самолета на посадку.

За пределами рабочей области системы, но в границах зоны ее действия существует нелинейная, с сохранением знака (стороны отклонения), зависимость между выходными токами I и отклонением самолета j от линий курса и глиссады.

Для дальномерного канала зона действия в вертикальной плоскости определяется диаграммой направленности антенны ретранслятора дальномера, по дальности зона действия определяется мощностью излучения.

Крутизна характеристики – один из важнейших параметров систем инструментальной посадки – определяется скоростью нарастания выходного тока бортового приемника в зависимости от величины отклонения самолета от линии курса или глиссады. Крутизна характеристики системы S зависит от крутизны характеристик радиомаяка и приемного устройства. Крутизна характеристики численно выражается отношением приращения тока на выходе бортового приемного устройства D I к приращению углового отклонения самолета от линии курса или глиссады планирования Dj в мкА/град:

.

С достаточной для практической работы точностью численное значение крутизны находят на определенном участке характеристики.

Для курсового канала на участке изменения тока от 0 до ±250 мкА (рис. 2, б):

,

где, I0±250 – ток на выходе курсового приемника, равный 250 мкА;

j0250 – угол отклонения самолета от равносигнального направления, соответствующий этим значениям тока.

Для глиссадного канала на участке изменения тока от 0 до ±125 мкА (рис. 2, в):

,

где I0±125 – ток на выходе глиссадного приемника, равный 125 мкА.

Если характеристика I=f(j) достаточно линейна, то расчет по формулам и дает приблизительно равные значения крутизны.

Отличия участков изменения тока, на которых определяется крутизна для курсового (0±250) и глиссадного (0±125) каналов, обусловлены тем, что в режимах полуавтоматического и автоматического управления характеристики по каналу глиссады используются до значений тока 125 мкА, а по каналу курса – до 250 мкА.

Крутизна характеристики во многом определяет точностные возможности системы инструментальной посадки. Чем выше крутизна, тем чувствительнее к угловым отклонениям самолета система и тем больший ток будет на выходе приемного устройства. Чем быстрее будет нарастать ток на выходе приемного устройства при отклонении самолета, тем активнее и точнее управляющая система будет устранять эти отклонения.

Л и н и я к у р с а, или л и н и я г л и с с а д ы, в системе инструментальной посадки – это геометрическое место таких точек в центре рабочей области системы, где выходной ток бортовых приемных устройств равен нулю.

Система инструментальной посадки устроена таким образом, что равносигнальная плоскость курса совпадает с продолжением оси ВПП, а равносигнальная плоскость глиссады для большинства аэродромов составляет с горизонтом угол, равный 2,7°.

 

Date: 2015-06-11; view: 3824; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.006 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию