Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Наблюдения и оценка их результатов





Результаты наблюдений за объектами техники представляют собой случайные величины, поскольку зависят от случайной комбинации различных факторов. Случайные величины могут быть непрерывными или дискретными. Непрерывная случайная величина может принимать любое численное значение. Дискретная – принимает только счетные (целые) значения. Например, число аварий может быть только целым.

Случайная величина обозначается обычно буквой (Х). Если проводить бесконечное количество измерений случайной величины Х, то множество их результатов представляет собой генеральную совокупность. На практике это невозможно, количество измерений имеет конечное значение (n). Набор измеренных значений (х1, х2, х3... хn) называется выборкой объема (n) из генеральной совокупности, или просто выборкой. Величина колеблется от значения до значения . Желательный объем выборки – не менее 35-40 значений величины .

Одной из характеристик выборки является среднее или среднеарифметическое значение измерений. Это среднее значение обычно обозначается (если случайная величина обозначена через х):

. (1.3)

Кроме того, к числу характеристик относят интервал значений, медиану, частоту события, вероятность события, дисперсию и т.д.

Рассмотрим на примере, какие параметры применяются чаще всего и как они вычисляются.

Пример. В процессе измерения срока службы 50 ртутно-кварцевых ламп получены следующие значения (упорядоченные), ч, представленные в таблице 1. 1:

Таблица 1. 1. Результаты испытаний ламп. Таблица наблюдаемых значений (n =50)

                   
                   
                   
                   
                   
= 3854,6         S=192730

 

Наибольшее значение - 4460, а наименьшее - 3520. Разность между максимальным и минимальным значением называется интервалом или вариацией (940). Среднее значение этих двух величин носит название середины интервала (для табл. 2. 1 середина интервала равна 3990). Интервал является характеристикой разброса значений случайной величины х.

Число, которое делит ряд измерений на две равные части, называется медианой. В данном случае медиана принимается равной 3935, что является средней величиной между двумя центральными 3930 и 3940. Если число n – нечетное, то центральное число и принимается за медиану.

Ясное представление о ряде измерений позволяет получить таблица частот появления событий в каждом отрезке на всем интервале измерений. Для определения частот интервал разбивают на ряд отрезков, количество отрезков зависит от количества измерений n. Рекомендации для их выбора приведены в табл. 1. 2.

Таблица 1. 2. Зависимость числа интервалов от количества измерений

Число измерений, n Число интервалов, К
40-100 7-9
100-500 8-12
500-1000 10-16
1000-10000 12-22

 

Таблица, конечно, не догма, а только ориентир. В нашем примере возьмем для простоты К =10, а интервал значений будем считать от 3500 до 4500. Затем подсчитывают количество измерений попавших в каждый интервал, и эти величины называют наблюдаемой частотой. Чтобы далее не зависеть от натуральных значений результатов измерений, наблюдаемая частота mi пересчитывается в относительную mi / n. Результаты расчетов сводим в табл. 1. 3.

Таблица 1. 3. Результаты обработки измерений срока службы ламп

Интервал 3501-3600 3601-3700 3701-3800 3801-3900 3901-4000 4001-4100 4101-4200 4201-4300 4301-4400 4401-4500
Наблюдаемая частота, mi                    
Относительная частота, mi/n 0,04 0,06 0,12 0,20 0,30 0,12 0,06 0,04 0,04 0,02
Накопленная частота, å mi/n 0,04 0,10 0,22 0,42 0,72 0,84 0,90 0,94 0,98 1,00

 

На основании данных табл. 1. 3 строим график изменения относительной частоты по интервалам (рис. 1. 1).

Рис. 1. 1. Гистограммы дифференциального и интегрального распределения.

Полученная диаграмма в виде ломаной линии (столбиков в каждом интервале) носит название гистограммы дифференциального распределения. Ординаты на графике называются относительной частотой. Если гистограмма строится на основе генеральной совокупности, то относительная частота будет являться вероятностью попадания измерения внутрь определенного интервала. В этом случае число интервалов должно быть бесконечно большим, а ширина очень малой и ломаная линия превратится тогда в кривую, которая называется функцией распределения плотности вероятностей и обозначают эту функцию f(x). Значение х, при котором f(x) достигает максимального значения называется модой распределения. В данном примере мода» 3950. Обычно мода (если она одна) соответствует наиболее часто встречающейся величине в измерениях. Судя по форме гистограммы, распределение срока службы ламп подчиняется нормальному закону.

Если относительные частоты суммировать от интервала к интервалу, то получаем накопленные частоты. Ломаная линия, построенная по данным табл. 1. 3 и отражающая изменения накопленной частоты, называется гистограммой интегрального (суммарного) распределения (рис. 1. 1). Если число измерений довести до бесконечности, а величину интервала сделать бесконечно малой, то гистограмма превратится в кривую интегрального распределения вероятности. Формула этой кривой F(х) носит название интегрального закона распределения.

Обычно плотность распределения и функция распределения сосредоточены на определенном отрезке (а; b). За пределами этого отрезка f(x) =0. В данном примере - (3500; 4500). Вид функции плотности распределения зависит от характера измеряемой случайной величины.

Когда число измерений в выборке велико, то интервал (а; b) недостаточно характеризует разброс значений случайной величины х. Более удобной количественной характеристикой является дисперсия S2:

при n , (1.4)

при n . (1.5)

Среднеквадратичное отклонение . Отношение называют коэффициентом вариации и обозначают через Cu.

По форме гистограммы дифференциального распределения судят о виде кривой дифференциального распределения (функции распределения плотности вероятности): экспоненциальное, Пуассона, биноминальное, нормальное и т. д. На основе этого принимается решение о законе дифференциального распределения величины х.

Подобные вычисления проводятся при обработке результатов испытаний элементов технических систем на надежность.

 

Date: 2015-07-17; view: 405; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.005 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию