Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Постановка задач принятия оптимальных решений
Несмотря на то, что методы принятия решений отличаются универсальностью, их успешное применение в значительной мере зависит от профессиональной подготовки специалиста, который должен иметь четкое представление о специфических особенностях изучаемой системы и уметь корректно поставить задачу. Искусство постановки задач постигается на примерах успешно реализованных разработок и основывается на четком представлении преимуществ, недостатков и специфики различных методов оптимизации. В первом приближении можно сформулировать следующую последовательность действий, которые составляют содержание процесса постановки задачи: · установление границы, подлежащей оптимизации системы, т.е. представление системы в виде некоторой изолированной части реального мира. Расширение границ системы повышает размерность и сложность многокомпонентной системы и тем самым затрудняет ее анализ. Следовательно, в инженерной практике следует осуществлять декомпозицию сложных систем на подсистемы, которые можно изучать по отдельности без излишнего упрощения реальной ситуации; · определение показателя эффективности, на основе которого можно оценить характеристики системы или ее проекта с тем, чтобы выявить “наилучший” проект или множество “наилучших” условий функционирования системы. В инженерных приложениях обычно выбираются показатели экономического (издержки, прибыль и т.д.) или технологического (производительность, энергоемкость, материалоемкость и т.д.) характера. “Наилучшему” варианту всегда соответствует экстремальное значение показателя эффективности функционирования системы; · выбор внутрисистемных независимых переменных, которые должны адекватно описывать допустимые проекты или условия функционирования системы и способствовать тому, чтобы все важнейшие технико-экономические решения нашли отражение в формулировке задачи; · построение модели, которая описывает взаимосвязи между переменными задачи и отражает влияние независимых переменных на значение показателя эффективности. В самом общем случае структура модели включает основные уравнения материальных и энергетических балансов, соотношения, связанные с проектными решениями, уравнения, описывающие физические процессы, протекающие в системе, неравенства, которые определяют область допустимых значений независимых переменных и устанавливают лимиты имеющихся ресурсов. Элементы модели содержат всю информацию, которая обычно используется при расчете проекта или прогнозировании характеристик инженерной системы. Очевидно, процесс построения модели является весьма трудоемким и требует четкого понимания специфических особенностей рассматриваемой системы. Несмотря на это, модели принятия оптимальных решений отличаются универсальностью, их успешное применение зависит от профессиональной подготовки инженера, который должен иметь полное представление о специфике изучаемой системы. Основная цель рассмотрения приводимых ниже примеров - демонстрировать разнообразных постановок оптимизационных задач на основе общности их формы. Все оптимизационные задачи имеют общую структуру. Их можно классифицировать как задачи минимизации (максимизации) M-векторного показателя эффективности Wm(x), m=1,2,...,M, N-мерного векторного аргумента x=(x1,x2,...,xN), компоненты которого удовлетворяют системе ограничений-равенств hk(x)=0, k=1,2...K, ограничений-неравенств gj(x)>0, j=1,2,...J, областным ограничениям xli<xi<xui, i=1,2...N. Все задачи принятия оптимальных решений можно классифицировать в соответствии с видом функций и размерностью Wm(x), hk(x), gj(x) и размерностью и содержанием вектора x: · одноцелевое принятие решений - Wm(x) - скаляр; · многоцелевое принятие решений - Wm(x) - вектор; · принятие решений в условиях определенности - исходные данные - детерминированные; · принятие решений в условиях неопределенности - исходные данные - случайные. Наиболее разработан и широко используется на практике аппарат одноцелевого принятия решений в условиях определенности, который получил название математического программирования. Более подробно задачи линейного программирования (W(x), hk(x), gj(x) - линейны) изложены в главе 9, целочисленного программирования (x - целочисленны)- в главе 10, динамического программирования (x- зависят от временного фактора)- в главе 11. Математический аппарат одноцелевого принятия решений в условиях неопределенности, изложенный в главе 12, представляет собой стохастическое программирование (известны законы распределения случайных величин). Глава 13 посвящена нелинейному программированию (W(x), hk(x), gj(x) - нелинейны).
Контрольные вопросы и задания 1. Какие научно-технические предпосылки становления науки “Исследование операций” можно выделить? 2. Изобразите графически связи исследования операций с другими науками. 3. Приведите основные принципы системного анализа. 4. Приведите примеры декомпозиции систем в лесном хозяйстве и лесной промышленности. 5. Приведите примеры иерархии систем в лесном хозяйстве и лесной промышленности. 6. Дайте определения и поясните суть следующих терминов: · операция; · цель; · оптимальное решение; · показатель эффективности; · множество допустимых решений. Глава 9. Date: 2016-07-25; view: 331; Нарушение авторских прав |