Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать неотразимый комплимент Как противостоять манипуляциям мужчин? Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?

Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Вычисление площади плоских фигур в декартовой системе координат.

 

Рассмотрим криволинейную трапецию, ограниченную прямыми

x=a, x=b, y=0 и кривой y=f(x), где f(x) ³ 0.

Как известно, площадь такой криволинейной трапеции выражается через определенный интеграл: S =

 

Пример: Вычислить площадь фигуры, ограниченной линиями y=e2x, x=0, x=2, y=0

S= = = .

Замечание: Иногда криволинейную трапецию приходится разбивать на несколько частей. Площадь всей трапеции есть сумма площадей всех частей.

Пример: Вычислить площадь фигуры, ограниченной линиями y=x, xy=1(y=1/x), x=0, x=2, y=0.

Разобьем трапецию на две части S1 и S2.

Площадь всей трапеции: S=S1+S2= = = = .

В общем случае площадь фигуры, ограниченной слева прямой x=a, справа прямой x=b, сверху кривой y=f2(x),снизу кривой y=f1(x), причем f2(x) ³f1(x).

В этом случае, неважно, где лежит криволинейная трапеция, выше оси OX или ниже, или часть выше, часть ниже. Самое главное, чтобы выполнялось f2(x) ³f1(x).






Date: 2016-11-17; view: 55; Нарушение авторских прав

mydocx.ru - 2015-2018 year. (0.004 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию