Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Кофакторы ферментов: ионы металлов и коферменты. Коферментные функции витаминов, (на примере трансаминаз и дегидрогеназ, витаминов В6 , РР, В2)





 

Кофакторы ферментов: ионы металлов и коферменты.

Активность ряда ферментов (простые белки) в норме зависит только от их структуры, тогда как для других, названных холоферментами (сложные белки), требуются кофакторы - вещества небелковой природы, в роли которых могут быть сложные органические соединения (коферменты) и ионы металлов.

Кофактор может образовывать с апоферментом прочные ковалентные связи. В этом случае кофермент называют простетической группой фермента. Приме­рами могут служить ФАД, ФМН, биотин, ковалентно связанный с остатком ли­зина в активном центре, Zn2+, который содержится в активном центре карбоксипептидазы. В том случае, если кофермент связывается с апоферментом нековалентными связями только на время химической реакции (НАД+ и НАДФ+), он может рассматриваться в качестве второго субстрата данного фермента Один и тот же кофермент может участвовать в разных биохимических реакциях, ком­плементарно связываясь с разными апоферментами. Собственной каталитиче­ской активностью коферменты не обладают.

Апофермент формирует активный центр, отвечает за специфичность действия фермента, фиксирует и ориентирует субстрат в активном центре и создает усло­вия для преобразования субстрата в продукты реакции. Ионы металла выполняют две главные функции.

I). Стабилизируют нативную конформацию фермента, структуру его активного центра и субстрата. 2). Участвуют в ферментативном катализе.

1). Металлоферменты, лишенные ионов металла, либо сохраняют способность к химическому катализу, утрачивая стабильность, либо полностью теряют актив­ность. Например, щелочная фосфатаза - металлофермент, в активном центре ко­торого находится Zn2+, лишенная ионов цинка щелочная фосфатаза, теряет фер­ментативную активность, но восстанавливает ее после добавления металла. В некоторых металлоферментах ион металла (Mg2+, Mn2+, Zn2+, Co2+, Мо2+) уча­ствует в образовании связи между молекулой субстрата и активным центром кофермента. в отсутствие иона эти ферменты не обладают активностью. Ряд ферментов в качестве субстрата используют комплекс превращаемого вещества с ионом. Для большинства киназ одним из субстратов служит не молекула АТФ, а комплекс Mg2+-ATФ.

2). Ферментативный электрофильный катализ. Ионы металла непосредст­венно участвуют в катализе и локализованы в активном центре фермента.В ак­тивном центре ферментов могут содержатся Zn 2+, Mn 2+, Fe 2+, Си 2+. Пример элек-трофильного катализа - действие карбоангидразы, содержащей ион цинка в ак­тивном центре.

 

B6 Коферментные функции выпол­няют два фосфорилированных производных пиридоксина: пиридоксальфосфат и пиридоксаминофосфат. Распад коферментов идет путем дефосфорилирования и окисления с образо­ванием 4-пиридоксиловой ки­слоты. которая выводится из ор­ганизма.

Коферментные формы витамина В6 включены в реакции, катализируемые почти всеми классами ферментов. Наиболее зна­чительная группа пиридоксалевых ферментов - аминотрансферазы. Пиридоксальзависимые (пиридоксалевые ферменты) ферменты катализи­руют взаимопревращения и распад аминокислот (регулируют аминокислот­ный состав крови при разном аминокислотном составе пиши), участвуют в специфических реакциях метаболизма отдельных аминокислот (серина, тре­онина, триптофана). Участвуют в обмене липидов, синтезе сфинголипидов. В качестве кофактора ферментов участвуют в начальных стадиях синтеза гема. Влияют на обмен жирных кислот.

 

PP - предшественник коферментов -никотинамидадениндинуклеотида (НАД+) и никотинамидадениндинуклеотид-фосфата (НАДФ), входящих в состав дегидрогеназ и редуктаз.

НАД+ и НАДФ+ приобретают коферментные функции после присоединения к никотинамиду радикала, включающего остаток рибозы, пирофосфат и нуклеотид - аденин. Витамин РР такими функциями не обладает.

1. НАД+ - кофермент дегидрогеназ, участвующих в реакциях окисления глю­козы, жирных кислот, глицерола, аминокислот после их дезаминирования; явля­ется коферментом дегидрогеназ цикла Кребса (кроме сукцинатдегидрогеназы). В этих реакциях кофермент выполняет функцию промежуточного акцептора электронов и протонов.

2. НАДН и НАДФН - коферменты реакций (НАДН-оксидазной и НАДФН-оксидазной), способствующих возникновению активных форм кислорода в фагоцитах.

 

B2 Кофермент ФМН и ФАД

1. ФМН и ФАД - коферменты оксидаз, переносящих электроны с окисляемого субстрата на кислород. Это ферменты распада аминокислот (оксидазы D- и L-аминокислот), нуклеотидов (ксантиноксидаза), биогенных аминов (моно- и диа-минооксидазы).

2. ФАД - кофермент пируват- и альфа-кетоглутаратдегидрогеназных комплек­сов. Совместно с тиаминпирофосфатом и другими коферментами катализируют окислительное декарбоксилирование кетокислот.

 







Date: 2016-05-24; view: 4883; Нарушение авторских прав



mydocx.ru - 2015-2024 year. (0.006 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию