Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Основные шкалы измерения





Почему необходима теория измерений? Теория измерений (в дальнейшем сокращенно ТИ) является одной из составных частей прикладной статистики. Она входит в состав статистики объектов нечисловой природы.

Использование чисел в жизни и хозяйственной деятельности людей отнюдь не всегда предполагает, что эти числа можно складывать и умножать, производить иные арифметические действия. Что бы вы сказали о человеке, который занимается умножением телефонных номеров? И отнюдь не всегда 2+2=4. Если вы вечером поместите в клетку двух животных, а потом еще двух, то отнюдь не всегда можно утром найти в этой клетке четырех животных. Их может быть и много больше - если вечером вы загнали в клетку овцематок или беременных кошек. Их может быть и меньше - если к двум волкам вы поместили двух ягнят. Числа используются гораздо шире, чем арифметика.

Так, например, мнения экспертов часто выражены в порядковой шкале (подробнее о шкалах говорится ниже), т.е. эксперт может сказать (и обосновать), что один показатель качества продукции более важен, чем другой, первый технологический объект более опасен, чем второй, и т.д. Но он не в состоянии сказать, во сколько раз или на сколько более важен, соответственно, более опасен. Экспертов часто просят дать ранжировку (упорядочение) объектов экспертизы, т.е. расположить их в порядке возрастания (или убывания) интенсивности интересующей организаторов экспертизы характеристики. Ранг - это номер (объекта экспертизы) в упорядоченном ряду значений характеристики у различных объектов. Такой ряд в статистике называется вариационным. Формально ранги выражаются числами 1, 2, 3,..., но с этими числами нельзя делать привычные арифметические операции. Например, хотя в арифметике 1 + 2 = 3, но нельзя утверждать, что для объекта, стоящем на третьем месте в упорядочении, интенсивность изучаемой характеристики равна сумме интенсивностей объектов с рангами 1 и 2. Так, один из видов экспертного оценивания - оценки учащихся. Вряд ли кто-либо будет утверждать, что знания отличника равны сумме знаний двоечника и троечника (хотя 5 = 2 + 3), хорошист соответствует двум двоечникам (2 + 2 = 4), а между отличником и троечником такая же разница, как между хорошистом и двоечником (5 - 3 = 4 - 2). Поэтому очевидно, что для анализа подобного рода качественных данных необходима не всем известная арифметика, а другая теория, дающая базу для разработки, изучения и применения конкретных методов расчета. Это и есть ТИ.

При чтении литературы надо иметь в виду, что в настоящее время термин "теория измерений" применяется для обозначения целого ряда научных дисциплин. А именно, классической метрологии (науки об измерениях физических величин), рассматриваемой здесь ТИ, некоторых других направлений, например, алгоритмической теории измерений. Обычно из контекста понятно, о какой конкретно теории идет речь.

Краткая история теории измерений. Сначала ТИ развивалась как теория психофизических измерений. В послевоенных публикациях американский психолог С.С. Стивенс основное внимание уделял шкалам измерения. Во второй половине ХХ в. сфера применения ТИ стремительно расширяется. Посмотрим, как это происходило. Один из томов выпущенной в США в 1950-х годах "Энциклопедии психологических наук" назывался "Психологические измерения". Значит, составители этого тома расширили сферу применения РТИ с психофизики на психологию в целом. А в основной статье в этом сборнике под названием, обратите внимание, "Основы теории измерений", изложение шло на абстрактно-математическом уровне, без привязки к какой-либо конкретной области применения. В этой статье [1] упор был сделан на "гомоморфизмах эмпирических систем с отношениями в числовые" (в эти математические термины здесь вдаваться нет необходимости), и математическая сложность изложения возросла по сравнению с работами С.С. Стивенса.

Уже в одной из первых отечественных статей по РТИ (конец 1960-х годов) было установлено, что баллы, присваиваемые экспертами при оценке объектов экспертизы, как правило, измерены в порядковой шкале. Отечественные работы, появившиеся в начале 1970-х годов, привели к существенному расширению области использования РТИ. Ее применяли к педагогической квалиметрии (измерению качества знаний учащихся), в системных исследованиях, в различных задачах теории экспертных оценок, для агрегирования показателей качества продукции, в социологических исследованиях, и др.


Итоги этого этапа были подведены в монографии [2]. В качестве двух основных проблем РТИ наряду с установлением типа шкалы измерения конкретных данных был выдвинут поиск алгоритмов анализа данных, результат работы которых не меняется при любом допустимом преобразовании шкалы (т.е. является инвариантным относительно этого преобразования).

Метрологи вначале резко возражали против использования термина "измерение" для качественных признаков. Однако постепенно возражения сошли на нет, и к концу ХХ в. ТИ стала рассматриваться как общенаучная теория.

Шесть типов шкал. В соответствии с ТИ при математическом моделировании реального явления или процесса следует прежде всего установить типы шкал, в которыхизмереныте или иные переменные. Тип шкалы задает группу допустимых преобразований шкалы. Допустимые преобразования не меняют соотношений между объектами измерения. Например, при измерении длины переход от аршин к метрам не меняет соотношений между длинами рассматриваемых объектов - если первый объект длиннее второго, то это будет установлено и при измерении в аршинах, и при измерении в метрах. Обратите внимание, что при этом численное значение длины в аршинах отличается от численного значения длины в метрах - не меняется лишь результат сравнения длин двух объектов.

Укажем основные виды шкал измерения и соответствующие группы допустимых преобразований.

В шкале наименований (другое название этой шкалы - номинальная; это - переписанное русскими буквами английское названиешкалы) допустимыми являются все взаимно-однозначные преобразования. В этой шкале числа используются лишь как метки. Примерно так же, как при сдаче белья в прачечную, т.е. лишь для различения объектов. В шкале наименований измерены, например, номера телефонов, автомашин, паспортов, студенческих билетов. Номера страховых свидетельств государственного пенсионного страхования, мед ицинского страхования, ИНН (индивидуальный номер налогоплательщика) измерены в шкале наименований. Пол людей тоже измерен в шкале наименований, результат измерения принимает два значения - мужской, женский. Раса, национальность, цвет глаз, волос - номинальные признаки. Номера букв в алфавите - тоже измерения в шкале наименований. Никому в здравом уме не придет в голову складывать или умножать номера телефонов, такие операции не имеют смысла. Сравнивать буквы и говорить, например, что буква П лучше буквы С, также никто не будет. Единственное, для чего годятся измерения в шкале наименований - это различать объекты. Во многих случаях только это от них и требуется. Например, шкафчики в раздевалках для взрослых различают по номерам, т.е. числам, а в детских садах используют рисунки, поскольку дети еще не знают чисел.

В порядковой шкале числа используются не только для различения объектов, но и для установления порядка между объектами. Простейшим примером являются оценки знаний учащихся. Символично, что в средней школе применяются оценки 2, 3, 4, 5, а в высшей школе ровно тот же смысл выражается словесно - неудовлетворительно, удовлетворительно, хорошо, отлично. Этим подчеркивается "нечисловой" характер оценок знаний учащихся. В порядковой шкале допустимыми являются все строго возрастающие преобразования.


Установление типа шкалы, т.е. задания группы допустимых преобразований шкалы измерения - дело специалистов соответствующей прикладной области. Так, оценки привлекательности профессий мы в монографии [2], выступая в качестве социологов, считали измеренными в порядковой шкале. Однако отдельные социологи не соглашались с нами, полагая, что выпускники школ пользуются шкалой с более узкой группой допустимых преобразований, например, интервальной шкалой. Очевидно, эта проблема относится не к математике, а к наукам о человеке. Для ее решения может быть поставлен достаточно трудоемкий эксперимент. Пока же он не поставлен, целесообразно принимать порядковую шкалу, так как это гарантирует от возможных ошибок.

Оценки экспертов, как уже отмечалось, часто следует считать измеренными в порядковой шкале. Типичным примером являются задачи ранжирования и классификации промышленных объектов, подлежащих экологическому страхованию.

Почему мнения экспертов естественно выражать именно в порядковой шкале? Как показали многочисленные опыты, человек более правильно (и с меньшими затруднениями) отвечает на вопросы качественного, например, сравнительного, характера, чем количественного. Так, ему легче сказать, какая из двух гирь тяжелее, чем указать их примерный вес в граммах.

В различных областях человеческой деятельности применяется много других видов порядковых шкал. Так, например, в минералогии используется шкала Мооса, по которому минералы классифицируются согласно критерию твердости. А именно: тальк имеет балл 1, гипс - 2, кальций - 3, флюорит - 4, апатит - 5, ортоклаз - 6, кварц - 7, топаз - 8, корунд - 9, алмаз - 10. Минерал с большим номером является более твердым, чем минерал с меньшим номером, при нажатии царапает его.

Порядковыми шкалами в географии являются - бофортова шкала ветров ("штиль", "слабый ветер", "умеренный ветер" и т.д.), шкала силы землетрясений. Очевидно, нельзя утверждать, что землетрясение в 2 балла (лампа качнулась под потолком - такое бывает и в Москве) ровно в 5 раз слабее, чем землетрясение в 10 баллов (полное разрушение всего на поверхности земли).

В медицине порядковыми шкалами являются - шкала стадий гипертонической болезни (по Мясникову), шкала степеней сердечной недостаточности (по Стражеско-Василенко-Лангу), шкала степени выраженности коронарной недостаточности (по Фогельсону), и т.д. Все эти шкалы построены по схеме: заболевание не обнаружено; первая стадия заболевания; вторая стадия; третья стадия… Иногда выделяют стадии 1а, 1б и др. Каждая стадия имеет свойственную только ей медицинскую характеристику. При описании групп инвалидности числа используются в противоположном порядке: самая тяжелая - первая группа инвалидности, затем - вторая, самая легкая - третья.

Номера домов также измерены в порядковой шкале - они показывают, в каком порядке стоят дома вдоль улицы. Номера томов в собрании сочинений писателя или номера дел в архиве предприятия обычно связаны с хронологическим порядком их создания.


При оценке качества продукции и услуг, в т.н. квалиметрии (буквальный перевод: измерение качества) популярны порядковые шкалы. А именно, единица продукции оценивается как годная или не годная. При более тщательном анализе используется шкала с тремя градациями: есть значительные дефекты - присутствуют только незначительные дефекты - нет дефектов. Иногда применяют четыре градации: имеются критические дефекты (делающие невозможным использование) - есть значительные дефекты - присутствуют только незначительные дефекты - нет дефектов. Аналогичный смысл имеет сортность продукции - высший сорт, первый сорт, второй сорт,…

При оценке экологических воздействий первая, наиболее обобщенная оценка - обычно порядковая, например: природная среда стабильна - природная среда угнетена (деградирует). Аналогично в эколого-медицинской шкале: нет выраженного воздействия на здоровье людей - отмечается отрицательное воздействие на здоровье.

Порядковая шкала используется и во многих иных областях. В эконометрике это прежде всего различные методы экспертных оценок. (см. посвященный им материал в части 3).

Все шкалы измерения делят на две группы - шкалы качественных признаков и шкалы количественных признаков.

Порядковая шкала и шкала наименований - основные шкалы качественных признаков. Поэтому во многих конкретных областях результаты качественного анализа можно рассматривать как измерения по этим шкалам.

Шкалы количественных признаков - это шкалы интервалов, отношений, разностей, абсолютная. По шкале интервалов измеряют величину потенциальной энергии или координату точки на прямой. В этих случаях на шкале нельзя отметить ни естественное начало отсчета, ни естественную единицу измерения. Исследователь должен сам задать точку отсчета и сам выбрать единицу измерения. Допустимыми преобразованиями в шкале интервалов являются линейные возрастающие преобразования, т.е. линейные функции. Температурные шкалы Цельсия и Фаренгейта связаны именно такой зависимостью: 0 С = 5/9 (0 F - 32), где 0 С - температура (в градусах) по шкале Цельсия, а 0 F - температура по шкале Фаренгейта.

Из количественных шкал наиболее распространенными в науке и практике являются шкалы отношений. В них есть естественное начало отсчета - нуль, т.е. отсутствие величины, но нет естественной единицы измерения. По шкале отношений измерены большинство физических единиц: масса тела, длина, заряд, а также цены в экономике. Допустимыми преобразованиями шкале отношений являются подобные (изменяющие только масштаб). Другими словами, линейные возрастающие преобразования без свободного члена. Примером является пересчет цен из одной валюты в другую по фиксированному курсу. Предположим, мы сравниваем экономическую эффективность двух инвестиционных проектов, используя цены в рублях. Пусть первый проект оказался лучше второго. Теперь перейдем на валюту самой экономически мощной державы мира - юани, используя фиксированный курс пересчета. Очевидно, первый проект должен опять оказаться более выгодным, чем второй. Это очевидно из общих соображений. Однако алгоритмы расчета не обеспечивают автоматически выполнения этого очевидного условия. Надо проверять, что оно выполнено. Результаты подобной проверки для средних величин описаны ниже (раздел 2.1.3).

В шкале разностей есть естественная единица измерения, но нет естественного начала отсчета. Время измеряется по шкале разностей, если год (или сутки - от полудня до полудня) принимаем естественной единицей измерения, и по шкале интервалов в общем случае. На современном уровне знаний естественного начала отсчета указать нельзя. Дату сотворения мира различные авторы рассчитывают по-разному, равно как и момент рождества Христова. Так, согласно новой статистической хронологии [3], разработанной группой известного историка акад. РАН А.Т.Фоменко, Господь Иисус Христос родился примерно в 1054 г. по принятому ныне летоисчислению в Стамбуле (он же - Царьград, Византия, Троя, Иерусалим, Рим).

Только для абсолютной шкалы результаты измерений - числа в обычном смысле слова. Примером является число людей в комнате. Для абсолютной шкалы допустимым является только тождественное преобразование.

В процессе развития соответствующей области знания тип шкалы может меняться. Так, сначала температура измерялась по порядковой шкале (холоднее - теплее). Затем - по интервальной (шкалы Цельсия, Фаренгейта, Реомюра). Наконец, после открытия абсолютного нуля температуру можно считать измеренной по шкале отношений (шкала Кельвина). Надо отметить, что среди специалистов иногда имеются разногласия по поводу того, по каким шкалам следует считать измеренными те или иные реальные величины. Другими словами, процесс измерения включает в себя и определение типа шкалы (вместе с обоснованием выбора определенного типа шкалы). Кроме перечисленных шести основных типов шкал, иногда используют и иные шкалы.

Обсуждение шкал измерения будет продолжено далее в более широком контексте – как одного из понятий статистики нечисловых данных.

Нечисловые данные

Статистика нечисловых данных - это направление в прикладной статистике, в котором в качестве исходных статистических данных (результатов наблюдений) рассматриваются объекты нечисловой природы. Так принято называть объекты, которые нецелесообразно описывать числами, в частности элементы нелинейных пространств. Примерами являются бинарные отношения (ранжировки, разбиения, толерантности и др.), результаты парных и множественных сравнений, множества, нечеткие множества, измерение в шкалах, отличных от абсолютных. Этот перечень примеров не претендует на законченность. Он складывался постепенно, по мере того, как развивались теоретические исследования в области статистики нечисловых данных и расширялся опыт применений этого направления прикладной статистики.

Объекты нечисловой природы широко используются в теоретических и прикладных исследованиях по экономике, менеджменту и другим проблемам управления, в частности управления качеством продукции, в технических науках, социологии, психологии, медицине и т.д., а также практически во всех отраслях народного хозяйства.

Начнем с первоначального знакомства с основными видами объектов нечисловой природы.

Результаты измерений в шкалах, отличных от абсолютной. Рассмотрим подробнее, чем раньше, конкретное исследование в области маркетинга образовательных услуг, послужившее поводом к развитию отечественных исследований по теории измерений. При изучении привлекательности различных профессий для выпускников новосибирских школ был составлен список из 30 профессий. Опрашиваемых просили оценить каждую из этих профессий одним из баллов 1,2,...,10 по правилу: чем больше нравится, тем выше балл. Для получения социологических выводов необходимо было дать единую оценку привлекательности определенной профессии для совокупности выпускников школ. В качестве такой оценки в работе [4] использовалось среднее арифметическое баллов, выставленных профессии опрошенными школьниками. В частности, физика получила средний балл 7,69, а математика - 7,50. Поскольку 7,69 больше, чем 7,50, был сделан вывод, что физика более предпочтительна для школьников, чем математика.

Однако этот вывод противоречит данным работы [5], согласно которым ленинградские школьники средних классов больше любят математику, чем физику. Обсудим одно из возможных объяснений этого противоречия, которое сводится к указанию на неадекватность (с точки зрения теории измерений) методики обработки эконометрических данных, примененной в работе [4].

Дело в том, что баллы 1,2,...,10 введены конкретными исследователями, т.е. субъективно. Если одна профессия оценена в 10 баллов, а вторая - в 2, то из этого нельзя заключить, что первая ровно в 5 раз привлекательней второй. Другой коллектив социологов мог бы принять иную систему баллов, например 1,4,9,16,...,100. Естественно предположить, что упорядочивание профессий по привлекательности, присущее школьникам, не зависит от того, какой системой баллов им предложит пользоваться маркетолог. Раз так, то распределение профессий по градациям десятибалльной системы не изменится, если перейти к другой системе баллов с помощью любого допустимого преобразования в порядковой шкале, т.е. с помощью строго возрастающей функции Если, Y1, Y2,...,Yn -ответы n выпускников школ, касающихся математики, а Z1, Z2,...,Zn -физики, то после перехода к новой системе баллов ответы относительно математики будут иметь вид g(Y1), g(Y2),...,g(Yn), а относительно физики - g(Z1), g(Z2),...,g(Zn).

Пусть единая оценка привлекательности профессии вычисляется с помощью функции f(X1, X2,...,Xn). Какие требования естественно наложить на функцию чтобы полученные с ее помощью выводы не зависели от того, какой именно системой баллов пользовался специалист по маркетингу образовательных услуг?

Замечание. Обсуждение можно вести в терминах экспертных оценок. Тогда вместо сравнения математики и физики n экспертов (а не выпускников школ) оценивают по конкурентоспособности на мировом рынке, например, две марки стали. Однако в настоящее время маркетинговые и социологические исследования более привычны, чем экспертные.

Единая оценка вычислялась для того, чтобы сравнивать профессии по привлекательности. Пусть f(X1, X2,...,Xn) - среднее по Коши. Пусть среднее по первой совокупности меньше среднего по второй совокупности:

f(Y1, Y2,...,Yn) < f(Z1, Z2,...,Zn).

Тогда согласно теории измерений необходимо потребовать, чтобы для любого допустимого преобразования g из группы допустимых преобразований в порядковой шкале было справедливо также неравенство

f(g(Y1), g(Y2),...,g(Yn)) < f(g(Z1), g(Z2),...,g(Zn)).

т.е. среднее преобразованных значений из первой совокупности также было меньше среднего преобразованных значений для второй совокупности. Причем сформулированное условие должно быть верно для любых двух совокупностей Y1, Y2,...,Yn и Z1, Z2,...,Zn и, напомним, любого допустимого преобразования. Средние величины, удовлетворяющие сформулированному условию, называют допустимыми (в порядковой шкале). Согласно теории измерений только такими средними можно пользоваться при анализе мнений выпускников школ, экспертов и иных данных, измеренных в порядковой шкале.

Какие единые оценки привлекательности профессий f(X1, X2,...,Xn) устойчивы относительно сравнения? Ответ на этот вопрос дается ниже в главе 2.1. В частности, оказалось, что средним арифметическим, как в работе [4] новосибирских специалистов по маркетингу образовательных услуг, пользоваться нельзя, а порядковыми статистиками, т.е. членами вариационного ряда (и только ими) - можно.

Методы анализа конкретных экономических данных, измеренных в шкалах, отличных от абсолютной, являются предметом изучения в статистике нечисловых данных как части эконометрики. Как известно, основные шкалы измерения делятся на качественные (шкалы наименований и порядка) и количественные (шкалы интервалов, отношений, разностей, абсолютная). Методы анализа статистических данных в количественных шкалах сравнительно мало отличаются от таковых в абсолютной шкале. Добавляется только требование инвариантности относительно преобразований сдвига и/или масштаба. Методы анализа качественных данных - принципиально иные.

Напомним, что исходным понятием теории измерений является совокупность допустимых преобразований шкалы (обычно Ф- группа), . Алгоритм обработки данных W, т.е. функция (здесь A -множество возможных результатов работы алгоритма) называется адекватным в шкале с совокупностью допустимых преобразований Ф, если

для всех и всех Таким образом, теорию измерений рассматриваем как теорию инвариантов относительно различных совокупностей допустимых преобразований Ф. Интерес вызывают две задачи:

а) дана группа допустимых преобразований Ф (т.е. задана шкала); какие алгоритмы анализа данных W из определенного класса являются адекватными?

б) дан алгоритм анализа данных W; для каких шкал (т.е. групп допустимых преобразований Ф) он является адекватным?

В главе 2.1 первая задача рассматривается для алгоритмов расчета средних величин. Информацию о других результатах решения задач указанных типов можно найти в работах [2,6,7].

Бинарные отношения. Пусть - адекватный алгоритм в шкале наименований. Можно показать, что этот алгоритм задается некоторой функцией от матрицы где

Если - адекватный алгоритм в шкале порядка, то этот алгоритм задается некоторой функцией от матрицы порядка n n, где

Матрицы B и C можно проинтерпретировать в терминах бинарных отношений. Пусть некоторая характеристика измеряется у n объектов q1,q2,…,qn, причем xi - результат ее измерения у объекта qi Тогда матрицы B и C задают бинарные отношения на множестве объектов Q ={ q1,q2,…,qn }. Поскольку бинарное отношение можно рассматривать как подмножество декартова квадрата Q Q, то любой матрице D = ||dij|| порядка n n из 0 и 1 соответствует бинарное отношение R(D), определяемое следующим образом: тогда и только тогда, когда dij = 1.

Бинарное отношение R(B) - отношение эквивалентности, т.е. симметричное рефлексивное транзитивное отношение. Оно задает разбиение Q на классы эквивалентности. Два объекта qi и qj входят в один класс эквивалентности тогда и только тогда, когда

Выше показано, как разбиения возникают в результате измерений в шкале наименований. Разбиения могут появляться и непосредственно. Так, при оценке качества промышленной продукции эксперты дают разбиение показателей качества на группы. Для изучения психологического состояния людей их просят разбить предъявленные рисунки на группы сходных между собой. Аналогичная методика применяется и в иных экспериментальных психологических исследованиях, необходимых для оптимизации управления персоналом.

Во многих эконометрических задачах разбиения получаются "на выходе" (например, в кластерном анализе) или же используются на промежуточных этапах анализа данных (например, сначала проводят классификацию с целью выделения однородных групп, а затем в каждой группе строят регрессионную зависимость).

Бинарное отношение R(С) задает разбиение Q на классы эквивалентности, между которыми введено отношение строгого порядка. Два объекта qi и qj входят в один класс тогда и только тогда, когда cij = 1 и cji = 1, т.е. xi = xj. Класс эквивалентности Q1 предшествует классу эквивалентности Q2 тогда и только тогда, когда для любых имеем cij = 1, cji = 0, т.е. xi < xj. Такое бинарное отношение в статистике часто называют ранжировкой со связями; связанными считаются объекты, входящие в один класс эквивалентности. В литературе встречаются и другие названия: линейный квазипорядок, упорядочение, квазисерия, ранжирование. Если каждый из классов эквивалентности состоит только из одного элемента, то имеем обычную ранжировку (другими словами, линейный порядок).

Как известно, ранжировки возникают в результате измерений в порядковой шкале. Так, при описанном выше опросе ответ выпускника школы - это ранжировка (со связями) профессий по привлекательности. Ранжировки часто возникают и непосредственно, без промежуточного этапа - приписывания объектам квазичисловых оценок - баллов. Многочисленные примеры тому даны английским статистиком М. Кендэлом [8]. При оценке качества промышленной продукции широко применяемые нормативные и методические документы предусматривают использование ранжировок.

Для прикладных областей, кроме ранжировок и разбиений, представляют интерес толерантности, т.е. рефлексивные симметричные отношения. Толерантность - математическая модель для выражения представлений о сходстве (похожести, близости). Разбиения - частный вид толерантностей. Толерантность, обладающая свойством транзитивности - это разбиение. Однако в общем случае толерантность не обязана быть транзитивной. Толерантности появляются во многих постановках теории экспертных оценок, например, как результат парных сравнений (см. ниже).

Напомним, что любое бинарное отношение на конечном множестве может быть описано матрицей из 0 и 1.

Дихотомические (бинарные) данные. Это данные, которые могут принимать одно из двух значений (0 или 1), т.е. результаты измерений значений альтернативного признака. Как уже было показано, измерения в шкале наименований и порядковой шкале приводят к бинарным отношениям, а те могут быть выражены как результаты измерений по нескольким альтернативным признакам, соответствующим элементам матриц, описывающих отношения. Дихотомические данные возникают в прикладных исследованиях и многими иными путями.

В настоящее время в большинстве стандартов, технических условий, технических регламентов, договоров на поставку конкретной продукции предусмотрен контроль по альтернативному признаку. Это означает, что единица продукции относится к одной из двух категорий - "годных" или "дефектных", т.е. соответствующих или не соответствующих требованиям стандарта. Отечественными специалистами проведены обширные теоретические исследования проблем статистического приемочного контроля по альтернативному признаку. Основополагающими в этой области являются работы академика А.Н.Колмогорова. Подход советской вероятностно-статистической школы к проблемам контроля качества продукции отражен в монографиях [9,10] (см. также главу 3.4).

Дихотомические данные - давний объект математической статистики. Особенно большое применение они имеют в экономических и социологических исследованиях, в которых большинство переменных, интересующих специалистов, измеряется по качественным шкалам. При этом дихотомические данные зачастую являются более адекватными, чем результаты измерений по методикам, использующим большее число градаций. В частности, психологические тесты типа MMPI используют только дихотомические данные. На них опираются и популярные в технико-экономическом анализе методы парных сравнений [11].

Элементарным актом в методе парных сравнений является предъявление эксперту для сравнения двух объектов (сравнение может проводиться также прибором). В одних постановках эксперт должен выбрать из двух объектов лучший по качеству, в других - ответить, похожи объекты или нет. В обоих случаях ответ эксперта можно выразить одной из двух цифр (меток)- 0 или 1. В первой постановке: 0, если лучшим объявлен первый объект; 1 - если второй. Во второй постановке: 0, если объекты похожи, схожи, близки; 1 - в противном случае.

Подводя итоги изложенному, можно сказать, что рассмотренные выше данные представимы в виде векторов из 0 и 1 (при этом матрицы, очевидно, могут быть записаны в виде векторов). Поскольку все результаты наблюдений имеют лишь несколько значащих цифр, то, используя двоичную систему счисления, любые виды анализируемых статистическими методами данных можно записать в виде векторов конечной длины (размерности) из 0 и 1. Представляется, что эта возможность в большинстве случаев имеет лишь академический интерес, но во всяком случае можно констатировать, что анализ дихотомических данных необходим во многих прикладных постановках.

Множества. Совокупность Xn векторов X = (x1, x2,…,xn) из 0 и 1 размерности n находится во взаимно-однозначном соответствии с совокупностью 2n всех подмножеств множества N = {1, 2,..., n}. При этом вектору X = (x1, x2,…,xn) соответствует подмножество N(X) N, состоящее из тех и только из тех i, для которых xi = 1. Это объясняет, почему изложение вероятностных и статистических результатов, относящихся к анализу данных, являющихся объектами нечисловой природы перечисленных выше видов, можно вести на языке конечных случайных множеств, как это было сделано в монографии [2].

Множества как исходные данные появляются и в иных постановках. Из геологических задач исходил Ж. Матерон, из электротехнических - Н.Н. Ляшенко и др. Случайные множества применялись для описания процесса случайного распространения, например распространения информации, слухов, эпидемии или пожара, а также в математической экономике. В монографии [2] рассмотрены приложения случайных множеств в теории экспертных оценок и в теории управления запасами и ресурсами (логистике).

Отметим, что с точки зрения математики реальные объекты можно моделировать случайными множествами как из конечного числа элементов, так и из бесконечного, однако при расчетах на ЭВМ неизбежна дискретизация, т.е. переход к первой из названных возможностей.

Объекты нечисловой природы как статистические данные. В эконометрике и прикладной математической статистике наиболее распространенный объект изучения - выборка x1, x2,…,xn, т.е. совокупность результатов n наблюдений. В различных областях статистики результат наблюдения - это или число, или конечномерный вектор, или функция... Соответственно проводится, как уже отмечалось, деление прикладной математической статистики: одномерная статистика, многомерный статистический анализ, статистика временных рядов и случайных процессов... В статистике нечисловых данных в качестве результатов наблюдений рассматриваются объекты нечисловой природы, в частности, перечисленных выше видов - измерения в шкалах, отличных от абсолютной, бинарные отношения, вектора из 0 и 1, множества, нечеткие множества. Выборка может состоять из n ранжировок или n толерантностей, или n множеств, или n нечетких множеств и т.д.

Отметим необходимость развития методов статистической обработка "разнотипных данных", обусловленную большой ролью в прикладных исследованиях "признаков смешанной природы". Речь идет о том, что результат наблюдения состояния объекта зачастую представляет собой вектор, у которого часть координат измерена по шкале наименований, часть - по порядковой шкале, часть - по шкале интервалов и т.д. Статистические методы ориентированы обычно либо на абсолютную шкалу, либо на шкалу наименований (анализ таблиц сопряженности), а потому зачастую непригодны для обработки разнотипных данных. Есть и более сложные модели разнотипных данных, например, когда некоторые координаты вектора наблюдений описываются нечеткими множествами.

Для обозначения подобных неклассических результатов наблюдений в 1979 г. в монографии [2] предложен собирательный термин - объекты нечисловой природы. Термин "нечисловой" означает, что структура пространства, в котором лежат результаты наблюдений, не является структурой действительных чисел, векторов или функций, она вообще не является структурой линейного (векторного) пространства. При расчетах объекты числовой природы, разумеется, изображаются с помощью чисел, но эти числа нельзя складывать и умножать.

С целью "стандартизации математических орудий" (выражение группы французских математиков Н.Бурбаки) целесообразно разрабатывать методы статистического анализа данных, пригодные одновременно для всех перечисленных выше видов результатов наблюдений. Кроме того, в процессе развития прикладных исследований выявляется необходимость использования новых видов объектов нечисловой природы, отличных от рассмотренных выше, например, в связи с развитием статистических методов обработки текстовой информации. Поэтому целесообразно ввести еще один вид объектов нечисловой природы - объекты произвольной природы, т.е. элементы множества, на которые не наложено никаких условий (кроме "условий регулярности", необходимых для справедливости доказываемых теорем). Другими словами, в этом случае предполагается, что результаты наблюдений (элементы выборки) лежат в произвольном пространстве X. Для получения теорем необходимо потребовать, чтобы X удовлетворяло некоторым условиям, например, было так называемым топологическим пространством. Как известно, ряд результатов классической математической статистики получен именно в такой постановке. Так, при изучении оценок максимального правдоподобия элементы выборки могут лежать в пространстве произвольной природы. Это не влияет на рассуждения, поскольку в них рассматривается лишь зависимость плотности вероятности от параметра. Методы классификации, использующие лишь расстояние между классифицируемыми объектами, могут применяться к совокупностям объектов произвольной природы, лишь бы в пространстве, где они лежат, была задана метрика. Цель статистики нечисловых данных (в некоторых литературных источниках используется термин "статистика объектов нечисловой природы") состоит в том, чтобы систематически рассматривать методы статистической обработки данных как произвольной природы, так и относящихся к указанным выше конкретным видам объектов нечисловой природы, т.е. методы описания данных, оценивания и проверки гипотез. Взгляд с общей точки зрения позволяет получить новые результаты и в других областях прикладной статистики.

Использование объектов нечисловой природы при формировании статистической или математической модели реального явления. Использование объектов нечисловой природы часто порождено желанием обрабатывать более объективную, более освобожденную от погрешностей информацию. Как показали многочисленные опыты, человек более правильно (и с меньшими затруднениями) отвечает на вопросы качественного например, сравнительного, характера, чем количественного. Так, ему легче сказать, какая из двух гирь тяжелее, чем указать их примерный вес в граммах. Другими словами, использование объектов нечисловой природы - средство повысить устойчивость эконометрических и экономико-математических моделей реальных явлений. Сначала конкретные области статистики объектов нечисловой природы (а именно, прикладная теория измерений, нечеткие и случайные множества) были рассмотрены в монографии [2] как частные постановки проблемы устойчивости математических моделей социально-экономических явлений и процессов к допустимым отклонениям исходных данных и предпосылок модели, а затем была понята необходимость проведения работ по развитию статистики объектов нечисловой природы как самостоятельного научного направления.

Обсуждение начнем со шкал измерения. Науку о единстве мер и точности измерений называют метрологией. Таким образом, репрезентативная теория измерений - часть метрологии. Методы обработки данных должны быть адекватны относительно допустимых преобразований шкал измерения в смысле репрезентативной теории измерений. Однако установление типа шкалы, т.е. задание группы преобразований - дело специалиста соответствующей прикладной области. Так, оценки привлекательности профессий мы считали измеренными в порядковой шкале. Однако отдельные социологи не соглашались с этим, считая, что выпускники школ пользуются шкалой с более узкой группой допустимых преобразований, например, интервальной шкалой. Очевидно, эта проблема относится не к математике, а к наукам о человеке. Для ее решения может быть поставлен достаточно трудоемкий эксперимент. Пока же он не поставлен, целесообразно принимать порядковую шкалу, так как это гарантирует от возможных ошибок.

Порядковые шкалы широко распространены не только в социально-экономических исследованиях. Они применяются в медицине - шкала стадий гипертонической болезни по Мясникову, шкала степеней сердечной недостаточности по Стражеско-Василенко-Лангу, шкала степени выраженности коронарной недостаточности по Фогельсону; в минералогии - шкала Мооса (тальк - 1, гипс - 2, кальций - 3, флюорит - 4, апатит - 5, ортоклаз - 6, кварц - 7, топаз - 8, корунд - 9, алмаз - 10), по которому минералы классифицируются согласно критерию твердости; в географии - бофортова шкала ветров ("штиль", "слабый ветер", "умеренный ветер" и др.) и т.д. Напомним, что по шкале интервалов измеряют величину потенциальной энергии или координату точки на прямой, на которой не отмечены ни начало, ни единица измерения; по шкале отношений - большинство физических единиц: массу тела, длину, заряд, а также цены в экономике. Время измеряется по шкале разностей, если год принимаем естественной единицей измерения, и по шкале интервалов в общем случае. В процессе развития соответствующей области знания тип шкалы может меняться. Так, сначала температура измерялась по порядковой шкале (холоднее - теплее), затем - по интервальной (шкалы Цельсия, Фаренгейта, Реомюра) и, наконец, после открытия абсолютного нуля температур - по шкале отношений (шкала Кельвина). Следует отметить, что среди специалистов иногда имеются разногласия по поводу того, по каким шкалам следует считать измеренными те или иные реальные величины.

Отметим, что термин "репрезентативная" использовался, чтобы отличить рассматриваемый подход к теории измерений от классической метрологии, а также от работ А.Н.Колмогорова и А. Лебега, связанных с измерением геометрических величин, от "алгоритмической теории измерения" и др.

Необходимость использования в математических моделях реальных явлений таких объектов нечисловой природы, как бинарные отношения, множества, нечеткие множества, кратко была показана выше. Здесь же обратим внимание, что используемые в классической статистике результаты наблюдений также "не совсем числа". А именно, любая величина X измеряется всегда с некоторой погрешностью и результатом наблюдения является

Как уже отмечалось, погрешностями измерений занимается метрология. Отметим справедливость следующих фактов:

а) для большинства реальных измерений невозможно полностью исключить систематическую ошибку, т.е.

б) распределение в подавляющем большинстве случаев не является нормальным (см. главу 2.1);

в) измеряемую величину X и погрешность ее измерения обычно нельзя считать независимыми случайными величинами;

г) распределение погрешностей оценивается по результатам специальных наблюдений, следовательно, полностью известным считать его нельзя; зачастую исследователь располагает лишь границами для систематической погрешности и оценками таких характеристик для случайной погрешности, как дисперсия или размах.

Приведенные факты показывают ограниченность области применимости распространенной модели погрешностей, в которой X и рассматриваются как независимые случайные величины, причем имеет нормальное распределение с нулевым математическим ожиданием.

Строго говоря, результаты наблюдения всегда имеют дискретное распределение, поскольку описываются числами с небольшими (1 - 5) числом значащих цифр. Возникает дилемма: либо признать, что непрерывные распределения - фикция, и прекратить ими пользоваться, либо считать, что непрерывные распределения имеют "реальные" величины X, которые мы наблюдаем с принципиально неустранимой погрешностью . Первый выход в настоящее время нецелесообразен, так как потребует отказаться от большей части разработанного математического аппарата. Из второго следует необходимость изучения влияния неустранимых погрешностей на статистические выводы.

Погрешности можно учитывать либо с помощью вероятностной модели ( - случайная величина, имеющая функцию распределения, вообще говоря, зависящую от X), либо с помощью нечетких множеств. Во втором случае приходим к теории нечетких чисел и к ее частному случаю - статистике интервальных данных (см. главу 3.5).

Другой источник появления погрешности связан с принятой в конструкторской и технологической документации системой допусков на контролируемые параметры изделий и деталей, с использованием шаблонов при проверке контроля качества продукции [12]. В этих случаях характеристики определяются не свойствами средств измерения, а применяемой технологией проектирования и производства. В терминах прикладной статистики сказанному соответствует группировка данных, при которой мы знаем, какому из заданных интервалов принадлежит наблюдение, но не знаем точного значения результата наблюдения. Применение группировки может дать экономический эффект, поскольку зачастую легче (в среднем) установить, к какому интервалу относится результат наблюдения, чем точно измерить его.

Объекты нечисловой природы как результат статистической обработки данных. Объекты нечисловой природы появляются не только на "входе" статистической процедуры, но и в процессе обработки данных, и на "выходе" в качестве итога статистического анализа.

Рассмотрим простейшую прикладную постановку задачи регрессии (см. также главу 3.2). Исходные данные имеют вид. Цель состоит в том, чтобы с достаточной точностью описать y как полином от x, т.е. модель имеет вид где m - неизвестная степень полинома; - неизвестные коэффициенты многочлена;, - погрешности, которые для простоты примем независимыми и имеющими одно и то же нормальное распределение. (Здесь наглядно проявляется одна из причин живучести статистических моделей на основе нормального распределения. Такие модели, хотя и, как правило, неадекватны реальной ситуации (см. главу 2.1), с математической точки зрения позволяет проникнуть глубже в суть изучаемого явления. Поэтому они пригодны для первоначального анализа ситуации, как и в рассматриваемом случае. Дальнейшие научные исследования должны быть направлены на снятие нереалистического предположения нормальности и перехода к непараметрическим моделям погрешности.) Распространенная процедура такова: сначала пытаются применить модель (2) для линейной функции (m = 1), при неудаче (неадекватности модели) переходят к многочлену второго порядка (m = 2), если снова неудача, то берут модель (2) с m = 3 и т.д. (адекватность модели проверяют по F- критерию Фишера).

Обсудим свойства этой процедуры в терминах прикладной статистики. Если степень полинома задана (m = m0), то его коэффициенты оценивают методом наименьших квадратов, свойства этих оценок хорошо известны (см., например, главу 3.2 или монографию [13, гл.26]). Однако в описанной выше реальной постановке m тоже является неизвестным параметром и подлежит оценке. Таким образом, требуется оценить объект (m, a 0, a 1, a 2, …, am), множество значений которого можно описать как Это - объект нечисловой природы, обычные методы оценивания для него неприменимы, так как m - дискретный параметр. В рассматриваемой постановке разработанные к настоящему времени методы оценивания степени полинома носят в основном эвристический характер (см., например, гл. 12 монографии [14]). Свойства описанной выше распространенной процедуры рассмотрены в главе 3.2. Там показано, что степень полинома m при этом оценивается несостоятельно, и найдено предельное распределение оценки этого параметра, оказавшееся геометрическим.

В более общем случае линейной регрессии данные имеют вид где - вектор предикторов (факторов, объясняющих переменных), а модель такова: (здесь K - некоторое подмножество множества {1,2,…,n}; - те же, что и в модели (2); aj - неизвестные коэффициенты при предикторах с номерами из K). Модель (2) сводится к модели (3), если

В модели (2) есть естественный порядок ввода предикторов в рассмотрение - в соответствии с возрастанием степени, а в модели (3) естественного порядка нет, поэтому здесь стоит произвольное подмножество множества предикторов. Есть только частичный порядок - чем мощность подмножества меньше, тем лучше. Модель (3) особенно актуальна в технических исследованиях (см. многочисленные примеры в журнале «Заводская лаборатория»). Она применяется в задачах управления качеством продукции и других технико-экономических исследованиях, в экономике, маркетинге и социологии, когда из большого числа факторов, предположительно влияющих на изучаемую переменную, надо отобрать по возможности наименьшее число значимых факторов и с их помощью сконструировать прогнозирующую формулу (3).

Задача оценивания модели (3) разбивается на две последовательные задачи: оценивание множества K - подмножества множества всех предикторов, а затем - неизвестных параметров aj. Методы решения второй задачи хорошо известны и подробно изучены. Гораздо хуже обстоит дело с оцениванием объекта нечисловой природы K. Как уже отмечалось, существующие методы - в основном эвристические, они зачастую не являются даже состоятельными. Даже само понятие состоятельности в данном случае требует специального определения. Пусть K0 - истинное подмножество предикторов, т.е. подмножество, для которого справедлива модель (3), а подмножество предикторов Kn - его оценка. Оценка Kn называется состоятельной, если

где - символ симметрической разности множеств; Card(K) означает число элементов в множестве K, а предел понимается в смысле сходимости по вероятности.

Задача оценивания в моделях регрессии, таким образом, разбивается на две - оценивание структуры модели и оценивание параметров при заданной структуре. В модели (2) структура описывается неотрицательным целым числом m, в модели (3) - множеством K. Структура - объект нечисловой природы. Задача ее оценивания сложна, в то время как задача оценивания численных параметров при заданной структуре хорошо изучена, разработаны эффективные (в смысле прикладной математической статистики) методы.

Такова же ситуация и в других методах многомерного статистического анализа - в факторном анализе (включая метод главных компонент) и в многомерном шкалировании, в иных оптимизационных постановках проблем прикладного многомерного статистического анализа. Перейдем к объектам нечисловой природы на "выходе" статистической процедуры. Примеры многочисленны. Разбиения - итог работы многих алгоритмов классификации, в частности, алгоритмов кластер-анализа. Ранжировки - результат упорядочения профессий по привлекательности или автоматизированной обработки мнений экспертов - членов комиссии по подведению итогов конкурса научных работ. (В последнем случае используются ранжировки со связями; так, в одну группу, наиболее многочисленную, попадают работы, не получившие наград.) Из всех объектов нечисловой природы, видимо, наиболее часты на "выходе" дихотомические данные - принять или не принять гипотезу, в частности, принять или забраковать партию продукции. Результатом статистической обработка данных может быть множество, например зона наибольшего поражения при аварии, или последовательность множеств, например, "среднемерное" описание распространения пожара (см. главу 4 в монографии [2]). Нечетким множеством Э. Борель [15] еще в начале ХХ в. предлагал описывать представление людей о числе зерен, образующем "кучу". С помощью нечетких множеств формализуются значения лингвистических переменных, выступающих как итоговая оценка качества систем автоматизированного проектирования, сельскохозяйственных машин, бытовых газовых плит, надежности программного обеспечения или систем управления. Можно констатировать, что все виды объектов нечисловой природы могут появляться " на выходе" статистического исследования.







Date: 2016-05-23; view: 696; Нарушение авторских прав



mydocx.ru - 2015-2024 year. (0.039 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию