![]() Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
![]() Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
![]() |
Расстояния. Псевдорешения. Нормальные решения. Нормальные псевдорешения
Расстоянием между множествами X и Y называется Рассмотрим задачу нахождения расстояния от точки x до подпространства W. В начале рассмотрим случай, когда подпространство задано в виде линейной оболочки системы векторов. Теорема 2.5. Расстояние от точки до подпространства достигается на перпендикуляре, опущенном из точки x на подпространство. Доказательство. Представим Пусть Рассмотрим случай, когда линейное подпространство задано системой однородных линейных уравнений Ax =0. Для простоты проведения рассуждений будем считать, что строки матрицы A линейно независимы. В ортонормированном базисе, коэффициенты при неизвестных в уравнении являются координатами вектора из ортогонального дополнения (см. п.2.4). Таким образом, по системе линейных уравнений можно найти базис ортогонального дополнения к пространству W. Обозначим базис Рассмотрим теперь задачу нахождения расстояния от точки x до линейного многообразия M. Эта задача легко сводится к аналогичной задаче построения расстояния от точки до подпространства. Действительно, пусть M=z + W, где z – произвольная точка из M, а W – подпространство. Тогда Линейное многообразие, заданное как множество решений одного линейного уравнения ax = b называется гиперплоскостью. Рассмотрим задачу отыскания расстояния от точки y до гиперплоскости ax = b. Перпендикуляр, опущенный из y на гиперплоскость равен Рассмотрим задачу определения расстояния между двумя линейными многообразиями Date: 2016-06-08; view: 966; Нарушение авторских прав |