Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Прямые и квадрики на расширенной евклидовой плоскости
Рассмотрим расширенную евклидову плоскость Р2 и однородный репер R (Е1∞, Е2∞, Е3, Е). В этом случае связь между проективными и аффинными координатами будет выражаться формулами: х = Для собственных точек плоскости координата х3 ≠0, для несобственных - х3 =0. Пусть дана прямая и: и1 х1+ и2 х2+ и3 х3 = 0. Прямая содержит только одну несобственную точку U∞ Все остальные точки собственные, тогда мы можем разделить уравнение прямой на х3 ≠ 0, получим: и1 Как известно, если две прямые параллельны, то их направляющие вектора коллинеарны: ā (и2; - и1) || Пусть дана квадрика: q11 ∙ х1 ² +q22 ∙ х2 ² +q33 ∙ х3 ² + 2 ∙ q12 ∙ х1 ∙ х2 +2 ∙ q13 ∙ х1 ∙ х3 +2 ∙ q23 ∙ х2 ∙ х3 =0. Разделим уравнение КВП на х3 ² ≠ 0, получим: q11 ∙ q11 ∙ х ² + 2 ∙ q12 ∙ х ∙ у + q22 ∙ у ² + 2 ∙ q13 ∙ х + 2 ∙ q23 ∙ у + q33 =0 – общее уравнение КВП на евклидовой плоскости. Как известно тип КВП на евклидовой плоскости определяется инвариантом J2 = J2>0 – эллиптический, J2<0 – гиперболический, J2=0 – параболический типы. Найдем несобственные точки квадрики. Это точки для которых х3 = 0.
Так все три координаты х1, х2, х3 одновременно не обращаются в 0, то хотя бы одна х1 или х2 не равны 0. Пусть это будет х2 ≠ 0. Разделим второе уравнение системы на х2 2≠ 0: q11 ∙ Таким образом, у линии эллиптического типа нет несобственных точек, у линии параболического типа одна несобственная точка –
Задача. Найдите несобственные точки гиперболы и параболы, заданных каноническими уравнениями. Решение. Парабола: у 2 = 2∙ р∙х, перейдем к проективным координатам:
Найдем несобственные точки квадрики: х2 ² = 0 Матрицей квадрики будет - Q = Найдем поляру несобственной точки:
х3 = 0 – несобственная прямая (Е1∞ Е2∞). Так как несобственная точка принадлежит квадрике, то поляра является касательной. Для гиперболы - самостоятельно. Определение: Асимптотой квадрики называется касательная в несобственной точке. Таким образом, у эллипса нет асимптот (нет пересечения с несобственной прямой) у параболы одна асимптота – несобственная прямая у гиперболы две асимптоты. Как известно эллипс и гипербола являются центральными линиями. Центр квадрики обычно определяется как точка, в которой делятся пополам все проходящие через нее хорды. Будем рассматривать хорды не как отрезки, а как прямые.
Определение: Центром КВП называется полюс несобственной прямой. Так как полюс находится по формуле: μ ∙ А= Q -1 ∙ а Т, тогда центр - μ ∙ А= Q -1 ∙ (0 0 1)Т = Q -1 ∙
Определение: Диаметром квадрики будем называть поляру несобственной точки. Замечание: Несобственных точек бесконечно много, а значит и диаметров много. Уравнение диаметра: λ ∙ а ∙ Х = А∞ Т∙ Q ∙ Х Замечание: По свойствам полюса и поляры – диаметры квадрики пересекаются в центре. Задача. Определить аффинный класс квадрики, найти центр, асимптоты (если есть) х1 ² + х2 ² + х3 ² + 6 ∙ х1 ∙ х2 =0. Найти диаметр, параллельный прямой 3 х1+ 2 х2 - х3 = 0. Решение. Найдем несобственные точки квадрики. Решим систему х1 ² + х2 ² + 6 ∙ х1 ∙ х2 = 0 |: х2 ² ≠ 0 решение Матрицей квадрики будет - Q =
Q-1 = μ ∙ С= Найдем асимптоты – поляры несобственных точек:
Найдем несобственную точку прямой 3 х1+ 2 х2 - х3 = 0:
Диаметр соответствующий этой точке: Несобственная точка этого диаметра
Другой способ: искомый диаметр проходит через точку D и центр С:
ПРОЕКТИВНЫЕ ПРЕОБРАЗОВАНИЯ
Date: 2015-12-12; view: 871; Нарушение авторских прав |