Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Общие теоремы динамики





Теорема о движении центра масс. Дифференциальные уравнения движения механической системы. Теорема о движении центра масс механической системы. Закон сохранения движения центра масс.

Теорема об изменении количества движения. Количество движения материальной точки. Элементарный импульс силы. Импульс силы за конечный промежуток времени. Теорема об изменении количества движения точки в дифференциальной и конечной формах. Закон сохранения количества движения механической системы.

Теорема об изменении момента количества движения. Момент количества движения материальной точки относительно центра и относительно оси. Теорема об изменении момента количества движения точки.

Главный момент количеств движения или кинетический момент механической системы относительно центра и относительно оси. Кинетический момент вращающегося твердого тела относительно оси вращения. Теорема об изменении кинетического момента механической системы. Закон сохранения кинетического момента механической системы. Закон сохранения кинетического момента механической системы. Дифференциальное уравнение вращательного движения твердого тела вокруг неподвижной оси.

Теорема об изменении кинетической энергии. Кинетическая энергия материальной точки. Элементарная работа силы; аналитическое выражение элементарной работы. Работа силы на конечном перемещении точки ее приложения. Работа силы тяжести, силы упругости и силы тяготения. Мощность. Теорема об изменении кинетической энергии точки.

Кинетическая энергия механической системы. Кинетическая энергия твердого тела при поступательном движении, при вращении вокруг неподвижной оси и при плоскопараллельном движении тела. Теорема об изменении кинетической энергии механической системы. Равенство нулю суммы работ внутренних сил в твердом теле. Работа и мощность сил, приложенных к твердому телу, вращающемуся вокруг неподвижной оси.

Принцип Даламбера. Принцип возможных перемещений. Сила инерции материальной точки. Принцип Даламбера для материальной точки и механической системы.. Возможные или виртуальные перемещения точки и механической системы. Число степеней свободы системы. Идеальные связи. Принцип возможных перемещений. Общее уравнение динамики.

Уравнения Лагранжа. Обобщенные координаты системы; обобщенные скорости. Выражение элементарной работы в обобщенных координатах. Обобщенные силы и их вычисление. Дифференциальные уравнения движения системы в обобщенных координатах или уравнения Лагранжа второго рода.

Неуравновешенность и балансировка. Идеальный ротор. Статическая, моментная и динамическая неуравновешенности. Динамические реакции. Статическая балансировка. Динамическая балансировка

 

ЛИТЕРАТУРА

Скорых В.Я. Теоретическая механика. Статика и кинематика: Учебное пособие. – Томск: Изд. ТПУ,1999.

Скорых В.Я. Теоретическая механика. Динамика с элементами аналитической механики: Учебное пособие – Томск: Изд. ТПУ, 2000.

Тарг С.М. Краткий курс теоретической механики. – М., 1995 и предыдущие издания.

Мещерский И.В. Сборник задач по теоретической механике. М., 1986 и предыдущие издания.

Сборник заданий для курсовых работ по теоретической механике под ред. А.А. Яблонского. М., 1985 и последующие издания.

 







Date: 2015-12-13; view: 585; Нарушение авторских прав



mydocx.ru - 2015-2024 year. (0.007 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию