Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Функция Грина уравнения Гельмгольца





 

-уравнение Гельмгольца

в правой части этого уравнения – источник , в левой – поле источника .

,

Для нахождения решения уравнения Гельмгольца вводят функцию Грина, удовлетворяющую условию:

Здесь надо использовать разложение функции Грина в интеграл Фурье:

где

Для -функции:

Подействуем на функцию Грина оператором :

Используем то, что , а следовательно :

Тогда перепишется в виде:

Равенство этих интегралов приводит к равенству фурье-образов:

Тогда фурье-образ функции Грина:

Теперь надо найти оригинал. Используем для этого теорию вычетов:

Пусть - угол между и . Обозначим . Введём сферические переменные .

, тогда .Следовательно

Используем теорию вычетов. У этого интеграла есть два полюса: и . Надо использовать при расчёте полюс , чтобы получить физически обоснованную ассимптотику.

Переходим в комплексную плоскость, замыкаем контур обхода сверху. Используем фиктивный переход:

Это позволяет получить нужную асимптотику.

- функция Грина уравнения Гельмгольца

Обозначим

 







Date: 2015-12-13; view: 663; Нарушение авторских прав



mydocx.ru - 2015-2024 year. (0.006 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию