Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Уравнения Максвелла в среде без учёта пространственно-временной дисперсии
С помощью этих уравнений можно описывать электромагнитное поле в среде. В среде будем ставить индекс «»=микро
включает в себя как связанные, так и свободные заряды в веществе. Каждой точке пространства ставится в соответствие функция . Это значит, что мы заменяем реальную среду моделью – сплошной средой, т.е. мы свойства разных точек «размазываем» по пространству. Существуют следующие способы описания сплошной среды на основе реальной среды: 1. Усреднение по некоторому физическому объёму и времени . 2. Статистическое усреднение. Считаем что у нас есть макроскопически-идентичный ансамбль систем(т.е. все внешние условия одинаковы). Здесь производятся измерения для отдельных ансамблей, а потом происходит усреднение. Этот способ более предпочтителен. Усреднение будем обозначать символами «< >». Отметим, что усреднение коммутативно с дифференциальными операторами. Итак, усредняем:
Среда под действием внешнего электромагнитного поля поляризуется, т.е. реагирует на внешнее воздействие. В случае, когда отсутствует пространственная дисперсия, поляризация характеризуется векторами электрической и магнитной поляризации . Можно показать, что и выражаются через :
Введём обозначения: ; Перенесём второе слагаемое из правой части в левую и объединим его с :
Итак, уравнения Максвелла для среды имеют вид:
Date: 2015-12-13; view: 353; Нарушение авторских прав |