![]() Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
![]() Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
![]() |
Статически неопределимые стержневые
СИСТЕМЫ ПРИ РАСТЯЖЕНИИ – СЖАТИИ В инженерной практике класс статически неопределимых задач весьма обширен. Наиболее простые из них – это стержневые системы, элементы которых работают на растяжение или сжатие. Проблема статически неопределимых задач заключается в том, что они не решаются методами теоретической механики, основанными на уравнениях равновесия механических систем, состоящих из абсолютно твёрдых тел. Учёные нашли метод решения таких задач, учтя способность стержневых систем деформироваться под действием внешних нагрузок столь незначительно, что изменение размеров конструкции неразличимо невооружённым глазом. Наряду со сложностью расчета, статически неопределимые конструкции обладают другим недостатком – в них возникают “паразитические” напряжения от неточности изготовления стержней, осадки опор и изменения температуры, что, в принципе, может привести к их разрушению без приложения внешней нагрузки. Однако такие системы имеют и большое достоинство – они значительно надёжней в работе по сравнению со статически определимыми системами, так как располагают “лишними” внешними связями (опорами) и (или) внутренними связями (стержнями), удаление которых не приводит к вырождению конструкции в механизм. Сложность расчёта зависит от степени статической неопределимости
Для раскрытия статической неопределимости используют условия совместности деформаций отдельных элементов стержневой системы. Последовательность расчёта таких конструкций состоит из пяти основных частей:
г) синтез трех сторон задачи; д) условия прочности. В статической стороне задачи анализируют опорные закрепления и структуру конструкции. Записывают линейно независимые уравнения равновесия, связывающие реакции
Методом сечений получают выражения для продольных сил в каждом элементе конструкции. Вычисляют степень статической неопределимости n. В геометрической стороне задачи изображают кинематически возможную схему перемещений характерных точек стержневой системы, на основе которой устанавливают n зависимостей между абсолютными деформациями стержней ∆ l с учетом неточности их изготовления δ:
Здесь n – степень статической неопределимости; m – число стержней системы. Учитывая, что абсолютные деформации стержней составляют приблизительно 1/1000 их длины, вместо реальной схемы перемещений рассматривают упрощённую схему. Например, перемещение точки по дуге окружности, вызванное вращением стержня относительно шарнира, заменяют перемещением по касательной, что значительно упрощает составление уравнений совместности деформаций. В физической стороне задачи, используя закон Гука, выражают абсолютные деформации стержней через статические N, геометрические l, A и физические Е, α параметры с учётом температурного воздействия на элементы системы
Здесь знак “+” в левой части принимают, если на кинематической схеме j -й стержень удлиняется, и знак “–”, если j -й стержень укорачивается; Nj – продольная сила, выражение которой получено в статической стороне задачи; Ej – модуль Юнга, зависящий от материала; Синтез трёх сторон задачи заключается в совместном решении уравнений (2.2) – (2.4), в результате чего находят опорные реакции Rk и, следовательно, продольные силы Nj, выраженные через параметр площади А, который является основной неизвестной величиной в конструктивном типе расчётов на прочность:
Здесь В последней части решения задачи для нахождения неизвестного параметра площади А записывают условия прочности для каждого элемента системы в виде двойных неравенств
где Подставляя
После вычисления параметра
На заключительном этапе определяют площади всех стержней Если задача решена верно, то одно из напряжений
Рис. 2.1. Противоречивость процесса “нагружение – перемещение” Варианты и исходные данные домашнего задания № 2
На рис. 2.2 показана конструктивная схема трёхстержневого кронштейна (фермы), задаваемая прямоугольными координатами
Рис. 2.2. Конструктивная схема стержневой системы Исходные данные, представленные в табл. 2.1 и 2.2, необходимо выбрать согласно шифру – двум последним цифрам зачётной книжки студента. Упругие и механические характеристики материалов стержней, приведенные в табл. 2.3, не зависят от шифра и принимаются одинаковыми во всех вариантах расчёта. Date: 2015-12-13; view: 646; Нарушение авторских прав |