Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
И всего поперечного сечения
Выбираем произвольную правовинтовую систему координат XOY и из центра тяжести каждой “простой” фигуры Сi проводим собственные центральные оси XCi, YCi, параллельные осям Х, Y. Показываем координаты центров тяжестей каждой фигуры хCi, yCi относительно вспомогательной системы XOY и вычисляем их значения, используя характерные размеры элементов с учётом их расположения в сечении (рис. 1.5): ; ; мм = 3,23 см; мм = 17,42 см; ; ; þ ; þ – z 0,þ
Рис. 1.4. Эскизы фигур и их характеристики Определяем координаты центра тяжести поперечного сечения в системе осей XOY по формулам (1.3):
Рис. 1.5. Поперечное сечение стержня (М 1:2) Откладываем в масштабе отрезки хC, уC и проводим центральные оси ХС, YС, на пересечении которых получаем центр тяжести сечения С (рис. 1.5). Вычисляем координаты центров тяжестей “простых” фигур относительно центральных осей всего сечения XC, YC, используя формулы ; (i = 1 – 4): ; ; ; ; ; ; ; . Проверяем выполнение основного свойства центральных осей, для которых статические моменты площади должны равняться нулю: ; относительная погрешность вычислений ⋍ 0,1 %. ; относительная погрешность вычислений ⋍ 0,2 %. Учитывая малую погрешность вычислений, заключаем, что координаты центра тяжести поперечного сечения найдены верно (при условии, что правильно определены координаты xCi, yCi).
Date: 2015-12-13; view: 334; Нарушение авторских прав |