Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Сечений стержней
Прочность, жёсткость и устойчивость деталей машин и элементов инженерных сооружений зависит в основном от внешних нагрузок, вида материала и размеров деталей и элементов, называемых в сопротивлении материалов стержнями. Условие прочности стержня можно записать в следующем виде: , где – функция прочности; – обобщённый параметр внешних нагрузок; – обобщённый параметр формы и размеров стержня; – обобщённый параметр упругих и механических характеристик материала. Параметр при расчётах распадается на два независимых подпараметра , где – параметр длины стержня; – параметр формы и размеров поперечного сечения стержня. Влияние формы и размеров поперечного сечения на прочность, жёсткость и устойчивость обладает большой нелинейностью и выражается в виде особых геометрических характеристик. На рис. 1.1 показано поперечное сечение стержня, отнесенное первоначально к вспомогательной произвольно выбранной системе координат XOY. Вводятся следующие понятия, связанные с геометрией сечения: ; – статические моменты площади; ; – осевые моменты инерции; – центробежный момент инерции; – полярный момент инерции, где А и dA – площадь и дифференциал площади поперечного сечения; x, y, ρ – координаты дифференциала площади. В сопротивлении материалов все расчётные формулы получены с использованием главных центральных осей инерции U и V, положение которых определяется следующим образом. Вычисляются координаты центра тяжести сечения во вспомогательной системе координат XOY (рис. 1.1):
Рис. 1.1. Поперечное сечение стержня Находятся моменты инерции относительно центральных осей XC, YC, параллельных исходным осям X, Y (рис. 1.1): ; ; . Определяется значение угла между центральной осью XС и главной осью U (осью YС и осью V), (рис. 1.1),
Вычисляются значения главных осевых и центробежного моментов инерции сечения ; ; (1.2) . Для простых фигур (прямоугольника, треугольника, круга и т.д.) и широко используемых в практике составных фигур (двутавров, швеллеров, уголков и т.д.) все геометрические характеристики вычислены и представлены в справочниках в виде формул или таблиц сортамента (приложение). Проектируемые детали машин и элементы инженерных сооружений имеют разнообразные профили, которые можно разбить на составляющие с известными геометрическими характеристиками относительно их собственных центральных осей. В этом случае используются формулы для координат центра тяжести и моментов инерции составных фигур (1.3) ; ; , (1.4) где , – координаты центра тяжести i -й простой фигуры в любой вспомогательной системе координат; Ai – площадь i -й простой фигуры; JXCi, JYCi, JXYCi – моменты инерции i -й простой фигуры относительно собственных центральных осей, параллельных осям вспомогательной системы; ; – координаты центра тяжести i -й простой фигуры относительно центральных осей XC, YC всего поперечного сечения. Отметим, что в качестве “простой” фигуры может рассматриваться любая фигура, если у неё известно положение центра тяжести, площадь и значения моментов инерции. Рассмотрим кратко основные свойства геометрических характеристик. Единицы измерений: [ x, y, xC, yC, a, b ] = 1 м (1 см; 1 мм); [ A ]=1 м2 (1 см2; 1 мм2); [ SX, SY ] = 1 м3 (1 см3; 1 мм3); [ JX, JY, JXY, JP ] = 1 м4 (1 см4; 1 мм4). Знаки: площадь А, осевые JX, JY и полярный JP моменты инерции могут быть только положительными. Координаты х, у, хC, уC, а, b, статические моменты площади SX, SY и центробежный момент инерции JXY могут быть положительными, отрицательными и равными нулю. Статические моменты площади SXC, SYC относительно осей, проходящих через центр тяжести сечения, всегда равны нулю – основное свойство центральных осей. Центробежный момент инерции JUV относительно главных осей всегда равен нулю – основное свойства главных осей. Относительно главных осей моменты инерции JU, JV экстремальны, т.е. один из них принимает максимальное значение, а другой минимальное – определение понятия “главные оси инерции”. При повороте осей координат на любой угол сумма осевых моментов инерции не изменяется, т.е. JX + JY = const – условие стационарности (инвариантности). Варианты и исходные данные домашнего задания № 1
На рис. 1.2 приведены схемы компоновки поперечных сечений стержней из 4 прокатных элементов: листа, двутавра, швеллера, уголка. Зазоры между элементами показаны условно (при изготовлении стержней элементы прикладывают вплотную и соединяют путем сварки). Вариант задания (№ схемы) выбирают согласно списочному номеру студента в журнале преподавателя. Исходные данные, включающие в себя номера прокатных профилей и толщину листа, выбирают из табл. 1.1 согласно шифру – двум последним цифрам зачётной книжки студента.
Рис. 1.2. Компоновочные схемы поперечных сечений стержней
Таблица 1.1 Номенклатура прокатных профилей
а – первая цифра шифра; б – вторая цифра шифра.
Все размеры и собственные геометрические характеристики двутавра, швеллера и уголка выписывают из таблиц сортамента, приведенных в приложении. Ширину листа (больший из 2 размеров прямоугольника) определяют согласно компоновочной схеме сечения. Геометрические характеристики сечения листа вычисляют по формулам для прямоугольника.
Date: 2015-12-13; view: 427; Нарушение авторских прав |