Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Угол поворота поперечного сечения бруса





Формулу для определения угла закручивания определим из соотношения (4):

θ = dφ/dx = Mx/(G´Iкр)

Угол закручивания элемента длиной dx, равен:

dφ = (Mx/(G´Iкр))´dx

Полный угол закручивания φ участка бруса длиной l:

Если на участке длиной l величины M, G и Iкр постоянны, то:

φ = (Mx´l)/(G´Iкр)

Величину GIp называют жесткостью сечения бруса при кручении. В случае, когда брус состоит из n участков с постоянными в пределах участка значениями Mx и GIp, тогда угол поворота определяют из соотношения:

Рассмотрим, как вычисляют геометрическую жесткость на кручение Iкр и момент сопротивления кручению Wкр кольцевого поперечного сечения. Для этого из сечения выделим кольцевой слой на расстоянии ρ от центра и толщиной (рис. 3.39).

Рисунок 3.39

В этом случае:

dF =2π ρ dρ, тогда

В случае сплошного круглого сечения, при d=0:

Iкр≈0,1D4

Момент сопротивления кручению кольцевого сечения равен:

,

а для сплошного круглого сечения:

Wкр≈0,2D3

Пример 3.4

Ось поворота элерона представляет собой трубу, которая закреплена на трех шарнирных узлах. Диаметр трубы 30 ´10-3 м, толщина стенки 10-3 м. Труба выполнена из алюминиевого сплава с модулем упругости на сдвиг G =27,7´ 103 МПа. У среднего шарнирного узла к трубе прикреплена качалка с тягой управления. Схема элерона и схема его закрепления приведены на рисунке 3.40а. На рисунке 3.40б приведено распределение давления по хорде элерона. По размаху давление распределено равномерно. Удельное давление на поверхность элерона 2000 Н/м2. Определить максимальное касательное напряжение в трубе и угол поворота сечения трубы, в котором закреплена качалка, относительного концевого сечения.

Рисунок 3.40

Решение.

1. Аэродинамическая нагрузка пытается повернуть поверхность элерона относительно оси вращения, однако тяга управления, закрепленная в середине трубы, сопротивляется этому повороту, в результате чего в трубе возникают крутящие моменты. Суммарная аэродинамическая нагрузка p, действующая на 1 м длины элерона:

p = 2000 ´ 0,375 = 750 Н/м

Учитывая диаграмму распределения давления по хорде элерона, определим величину W из соотношения:

0,075´ W + 0,5 ´ W ´ 0,3 = 750, откуда

W» 3333,3 Н/м2

Усилие P1, действующее на носовую часть элерона, равна:

P1 = 0,075´ W = 0,075´3333,3 = 250 Н/м

Усилие P2, действующее на хвостовую часть элерона, равна:

P2 = 0,5 ´ W ´ 0,3 = 0,5´3333,3´ 0,3= 500 Н/м

Крутящий момент, действующий на единицу длины трубы m:

m = 250´0,375 - 500´0,1 = 43,75 Н м/м

Определим распределение крутящих моментов, максимальных касательных напряжений, относительных и абсолютных углов закручивания трубы.

2. Расчетная схема трубы приведена на рисунке 3.41а. На схеме:

M – сосредоточенный крутящий момент от тяги управления;

m – распределенный крутящий момент от аэродинамических нагрузок.

Рисунок 3.41

3. Действующие нагрузки вызывают в трубе крутящие моменты:

M1-2(x) = M2-3(x) = m x

Максимальный крутящий момент возникает в середине трубы:

Mmax = 0,725´ m = 0,725´43,75 = 31,7 кг м

Эпюра крутящих моментов приведена на рисунке 3.41б.

4. Момент сопротивления кручению трубы:

Wкр≈0,2(D3-d3) = 0,2×10-9 (303-283) = 1,46 10-6 м3

Максимальное касательное напряжение:

τmax 1-2(x) = τmax 2-3(x) = mx/ Wкр = (31,7/1,46 10-6) x = 21,7 x

τmax 1-2 (0,725)= 21,7´0,725 = 15,7 МПа

Эпюра максимальных касательных напряжений приведена на рисунке 3.41в.

5. Геометрический момент сопротивления кручению сечения трубы:

= 0,1×10-12 (304-284) = 1,95 10-8 м4

Относительный угол закручивания:

θ1-2(x) = θ2-3(x)=(m´x) /(G´Iкр) =(43,75´ x)/(27,7´109´1,95 10-8) =0,081´ x

θ1-2(0,725) = 0,081´0,725=0,059 рад/м

Эпюра относительных углов закручивания приведена на рисунке 3.41г.

6. Абсолютные углы поворота сечений:

Таким образом, угол закручивания середины трубы относительно концевого сечения:

j1-2(0,725) = 0,04´0,7252´(180/π)= 1,2 град

Эпюра углов поворота сечений приведена на рисунке 3.41д.







Date: 2015-12-13; view: 376; Нарушение авторских прав



mydocx.ru - 2015-2024 year. (0.008 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию