![]() Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
![]() Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
![]() |
Лінійні диференціальні рівняння АСР
В загальному випадку динамічні властивості одноконтурної АСР описуються диференціальним рівнянням виду:
![]() де: X,U,z – координати стану (регульована координата) та вхідні змінні – керуюча дія та збурення, В рівнянні (2.11) необхідно врахувати фактор часу, тобто фактично всі змінні залежать від часу – x(t),U(t),z(t). Коефіцієнти диференціального рівняння називають параметрами, значення яких визначаються особливостями об’єкта: конструктивними і режимними, наприклад швидкістю протікання процесів, константами тепло- та масообміну, хімічних реакцій. Якщо розглядаються нестаціонарні системи, то коефіцієнти диференціального рівняння залежать від часу -. Зручною формою запису рівняння (2.11) є операторна, або символічна. Для цього вводиться оператор
З урахуванням (2.12) диференціальне рівняння (2.11) в операторному вигляді має вид:
або:
де: Лінійні диференціальні рівняння першого, другого, а часом і більш високих порядків записують в стандартній (канонічній) формі, коли вихідна координата та її похідні знаходяться в лівій частині рівняння, вхідні змінні – в правій частині, а коефіцієнт при Х дорівнює одиниці. Наприклад, диференціальне рівняння першого порядку (n=1) має вид:
Для приведення до стандартної форми поділимо вираз (2.15) на
де: Стандартна форма диференційного рівняння дозволяє оцінити деякі важливі показники елемента чи системи: постійна часу T завжди має розмірність часу (с, хв) і визначає інерційність системи, наприклад тривалість перехідного процесу tn=(3 Диференціальне рівняння (2.11) описує поведінку системи в динаміці, його розв’язком є перехідні процеси при різних вхідних діяннях та заданих початкових умовах:
де:
Розв’язок диференціальних рівнянь знаходять, виконуючи такі етапи: знаходження загального розв’язку однорідного рівняння, частинного неоднорідного, загального та власне розв’язку з числовими значеннями постійних коефіцієнтів. Вільна складова – це розв’язок оператора
де: З диференціальних рівнянь можна отримати також рівняння статики, прирівнявши похідні нулю (p=0). Для рівняння (2.15) статична характеристика буде
Передаточні функції. В теорії автоматичного керування зручною і найбільш наочною формою визначення закономірностей перетворення вхідних сигналів є предаточна функція. В операторному вигляді – це відношення оператора дії до власного оператора, причому кількість передаточних функцій дорівнює кількості вхідних сигналів:
тобто Передаточні функції мають нулі (корені рівняння R(p)=0) і полюси (корені рівняння D(p)=0). На основі виразів (2.20)-(2.22) визначається фундаментальна залежність:
Таким чином, передаточні функції мають чіткий фізичний зміст: показують як перетворюється вхідний сигнал (передається з входу на вихід). Передаточні функції зручно отримувати з диференціальних рівняннь в операторному вигляді, наприклад рівняння (2.16) можна записати так:
тоді
Передаточні функції можуть бути також в формі зображень Лапласа:це відношення зображення вихідної величини до зображення вхідної за нульових початкових умов. Формально це можна отримати підстановкою в (2.20)-(2.22) р=s (s-комплексне число), але це справедливо лише для стаціонарних систем, тоді
Частотні характеристики. При розв’язанні задач аналізу та синтезу необхідно оцінювати також властивості елементів та систем в частотній області, при різних частотах вхідних сигналів. Частотні характеристики – це реакція елемента чи системи на гармонійний сигнал (2.9) при змінюванні частоти від 0 до
Динамічні властивості досліджуваних елементів чи систем визначаються амплітудно-частотною А(ω), фазо-частотною φ(ω) та амплітудно-фазовою характеристиками (рис.2.4).
Рис.2.4 Частотні характеристики,а - амплітудно-частотна (АЧХ); б - фазо-частотна (ФЧХ); в - амплітудно-фазова (АФХ) При збільшенні ω амплітудно-фазова характеристика А(ω)→0, тобто проявляються інерційні властивості елемента та системи. Чим менша інерційність, тим ширша А(ω), тобто більша смуга (діапазон) пропускаємих частот. Часто існує резонансна частота, коли А(ωр) має максимальне значення. Фазо-частотна характеристика φ(ω) від’ємна, тобто вихідні коливання відстають від вхідних за фазою. На комплексній площі А(ω) та φ(ω) об’єднуються в одну - амплітудно-фазову характеристику (АФХ) – рис.2.4,в. Це крива (годограф), яку описує кінець вектора А при зміні частоти від 0 до Важливою особливістю лінійних систем є те, що частота вхідних та усталених вихідних (після зникнення перехідної складової) сигналів співпадають. Крім того, якщо розглядати відношення амплітуд вихідного та вхідного сигналів, то при ω=0 – це коефіцієнт передачі (А(0)=К). Частотну характеристику можна отримати підстановкою р=jω в вираз для передаточної функції, наприклад (2.20), тоді
Цей вираз називають частотною передаточною функцією, яку можна подати у вигляді:
де:
В загальному випадку виконують такі перетворення: записують вираз:
після чого звільняються від уявності в знаменнику:
де:
В практичних розрахунках користуються також логарифмічними частотними характеристиками, побудованими в логарифмічних координатах, тому їх можна замінити ломаними лініями, складеними з кількох прямолінійних відрізків. Крім того, в логарифмічних координатах легко знаходити характеристики різних з’єднань елементів: операціям множення і ділення відповідають додавання та віднімання ординат логарифмічних характеристик, наприклад:
Амплітудно-фазові характеристики будуються в координатах За видом частотних характеристик всі елементи і системи поділяються на дві групи: мінімально-фазові і немінімально-фазові. Мінімально-фазовими називають такі елементи і системи, для яких всі нулі та полюси передаточної функції W(p) мають від’ємні дійсні частини та фазовий зсув φ(ω) є мінімальним в порівнянні з іншими елементами, які мають таку ж амплітудно-частотну характеристику А(ω), але хоча б один полюс чи нуль у них має додатню частину. Для мінімально-фазових елементів і систем достатньо знати А(ω), U(ω) i V(ω) для повної оцінки їх характерстик.
Часові характеристики. Це реакція елемента чи системи на типові вхідні сигнали – стрибкоподібний чи імпульсний (рис.2.5). Часові функції є наочними, за їх видом можна оцінити загальні властивості елемента чи системи, які визначають їх динамічні особливості. З математичної точки зору часові характеристики є розв’язком диференціального рівняння, яке описує поведінку елемента чи системи в залежності від виду зовнішнього сигналу (це визначається правою частиною диференціального рівняння) та початкових умов, як правило нульових. Перехідна функція h(t) (рис.2.5,а) – зміна вихідної величини з часом при подачі на вхід одиничного ступінчатого сигналу за нульових початкових умов.
Рис.2.5. Часові характеристики: а) – перехідна функція h(t) б) – імпульсна перехідна функція w(t)
Імпульна перехідна функція w(t) (рис.2.5,б) – зміна вихідної велечини з часом після подачі на вхід сигнала у вигляді В задачах аналізу та синтезу використовуються різні динамічні характеристики, тому важливо знати і зв’язок між ними, який є однозначним тому, що фактично – це відображення одних і тих же властивостей елемента чи системи в різній формі. В той же час це дає можливість використовувати в конкретній задачі саме такі характеристики, які є найбільш зручними. Вище вже вказувалось, що перехідна функція h(t) – розв’язок диференціального рівняння. Враховуючи, що
справедливі також залежності:
зображення за Лапласом одиничного стрибка
тому
де: Date: 2016-02-19; view: 592; Нарушение авторских прав |