Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Класифікація систем автоматичного керування





На рис.1.2,а,б,в показані структури систем керування з різним ступенем деталізації та виділення різних пристроїв і елементів. Загальним в цих структурах є те, що пристрої управління ПУ чи автоматичний регулятор АР отримує сигнал про стан об’єкта Х або його вихідну змінну Y і формує керуючу дію U. Для схеми, показаної на рис.1.2.а., характерним є те, що задане значення хзд може формуватись безпосередньо в пристрої управління.

 

 

 
 

 

 


 

Рис.1.2.Структура систем керування.

 

Схема б) показує сигнали об’єкта та автоматичного регулятора АР, що дає можливість описати процес функціонування автоматичної системи регулювання, а саме: на регулятор поступає сигнал Δх = хзд – x(t), який характеризує порушення режиму роботи об’єкта. Автоматичний регулятор може враховувати додатковий сигнал від компенсатора К про збурення Z.Тоді автоматичний регулятор повинен сформувати такий сигнал Uрег = f(Δx, Z, t), який компенсував би дію збурення Z або принаймні зменшив його вплив на роботу об’єкта, тобто необхідно, щоб Δх = хзд – х(t)→0. Приймається, що хзд = const на тривалому періоді керування, але є клас систем де хзд змінюється (хзд - var), тоді записують: хзд(t), t – час. В системах керування виділяють:

- алгоритм функціонування – сукупність визначених дій, які забезпечують правильне функціонування системи (відповідає на запитання: що необхідно знати для досягнення мети?), цей алгоритм, як правило, є заданим;

- алгоритм керування – сукупність визначених дій, які забезпечують потрібний характер дій для здійснення алгоритму функціонування (відповідає на запитання: як необхідно діяти?).

Автоматична система керування структурно може подаватись по-різному. Структура – це сукупність частин системи, на які вона може поділятись за певними ознаками, та зв’язків між ними. Виділяють такі види структур:

- алгоритмічна – сукупність частин, призначених для виконання алгоритмів перетворення інформації у відповідності до алгоритма функціонування;

- функціональна – сукупність частин, призначених для виконання окремих функцій системи (отримання інформації, її перетворення, передача сигналів і інш.);

- конструктивна (технічна) - сукупність частин як окремих конструктивних елементів.

На рис.1.2.в додатково показано: Зд – пристрій для формування хзд, Д1, Д2 – датчики; ВМ – виконавчий механізм; РО – регулюючий орган; ПР – перетворювач.

Системи автоматичного керування можуть класифікуватись за різними ознаками, для подальшого викладення матеріалу доцільно виділити такі їх класи: розімкнені, замкнені, комбіновані системи. На рис.1.2. показано, що на пристрій керування поступає інформація про хзд, х та Z, але можливі і частинні випадки. В розімкнених системах відсутня інформація про фактичне значення регульованої координати х, відсутній зворотній зв’язок. При цьому можуть бути різні варіанти, а саме: поступає сигнал від хзд або від Z, чи обидва одночасно, однак при керуванні в розімкненій системі за хзд повинна бути впевненність, що регульована координата буде відтворювати хзд (x(t)→xзд(t)), а це можливо лише за умови, що властивості об’єкта не змінюються. Ознакою класифікації в даному випадку є напрям передачі інформації: в розімкнених системах інформація передається в одному напрямку (від пристрою завдання і регулятора до об’єкта), в замкнених та комбінованих системах є зворотній зв’язок. Це універсальна властивість таких систем керування, що й визначає їх широке застосування.

Системи з різними видами алгоритму функціонування. Сюди відносяться автоматичні системи регулювання, серед яких можна виділити:

- системи стабілізації, для яких хзд залишається постійним на визначеному інтервалі часу, тоді:

x(t) = xзд, t є [0,T]; (1-1)

- системи програмного регулювання, коли хзд визначається програмно і змінюється, наприклад, за часом. Такі системи часто застосовуються для керування періодичними процесами;

- системи слідкування (слідкуючі системи), коли хзд є змінним, наперед не заданим і невідомим та залежить від змін іншої величини, тобто система “слідкує” за змінами, які характеризують режим роботи об’єкта.

Одно- та багатовимірні системи. Ця ознака передбачає виділення класів систем за кількістю вихідних змінних об’єкта. Тут виділяються ще два підкласи для багатовимірних систем:

- системи незв’язаного регулювання, коли є кілька регульованих координат х і відповідних автоматичних регуляторів, які не зв’язані між собою і утворюють сепаратні контури. В той же час регульовані координати можуть бути зв’язаними через об’єкт;

- системи зв’язаного регулювання, коли автоматичні регулятори для різних х зв’язані додатковими зв’язками, за рахунок чого досягається автономність регулювання окремих Х.

Лінійні та нелінійні системи. Основними методами дослідження автоматичних систем є їх математичне моделювання.Математичні моделі реальних систем повинні з необхідною точністю відобразити їх характеристики, що приводить до складних нелінійних залежностей. В складі реальних систем є завжди елементи з нелінійними характеристиками. З математичної точки зору наявність нелінійних залежностей не дозволяє отримати загальні розв’язки задач аналізу та синтезу, значно ускладнює дослідження систем. В теорії автоматичного керування найбільш повно розроблені методи дослідження лінійних систем, хоча це є певною ідеалізацією. Системи називають:

- лінійними, якщо вони описуються лінійними залежностями. Для таких систем виконується принцип суперпозиції (накладання): реакція системи на будь-яку комбінацію зовнішніх діянь дорівнює сумі реакцій на кожне з них, прикладених окремо. Це відповідає адитивній функції, наприклад: x(U,Z) = x(U) + x(Z), (1-2)

- нелінійними, якщо в їх складі є хоча б один елемент з нелінійними характеристиками.

Для спрощення задач аналізу і синтезу виконують лінеаризацію нелінійних характеристик, що дає можливість замінити реальну нелінійну систему еквівалентною лінійною (лінеаризованою).

Стаціонарні і нестаціонарні системи. В процесі функціонування системи відбуваються змінювання характеристик не лише зовнішнього середовища, а й окремих їх частин, тому виділяють:

- стаціонарні системи, параметри та характеристики яких не змінюються з часом. Динаміка таких систем описується диференціальними рівняннями з постійними коефіцієнтами;

- нестаціонарні системи, в яких змінюються характеристики та параметри з часом, а поведінка цих систем в динаміці описується диференціальними рівняннями із змінними коефіцієнтами, значення яких залежить від часу. При дослідженні цих систем необхідно враховувати не лише величину збурення, а й момент його прикладання.

Системи неперервної та дискретної дії. За характером зміни сигналів системи діляться на:

- неперервної дії (неперервні, аналогові), всі сигнали в яких є неперервними функціями часу;

- дискретної дії (дискретні), в яких є елементи, що перетворюють неперервні сигнали в стрибкоподібні або послідовність імпульсів (релейні, імпульсні, цифрові).

Екстремальні, адаптивні та оптимальні системи. В системах керування функціонують об’єкти, статичні характеристики яких можуть мати точку екстремуму, в якій досягаються найвищі техніко-економічні показники роботи. За допомогою спеціальних керуючих дій система підтримує режим роботи об’єкта в околі екстремальної точки, яка змінює своє положення з часом. Такі системи називають екстремальними. Адаптивні системи мають властивість пристосовування до змінюваних характеристик зовнішнього середовища та параметрів об’єкта. Це відбувається за рахунок змінювання структури системи та (чи) параметрів окремих її частин. Оптимальні системи призначені для досягнення найкращих результатів роботи протягом певного часу у відповідності з критерієм оптимальності (керування) в конкретних умовах з урахуванням існуючих ресурсів та обмежень. Це найбільш складні системи, в яких використовуються спеціальні математичні методи, а для їх реалізації потрібні ЕОМ з відповідним програмним забезпеченням.

Date: 2016-02-19; view: 662; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.007 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию