Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Линейная непрерывная детерминированная модель многомерной динамической системы в переменных состояния






Представление в переменных состояния основано на использовании теоремы Коши об эквивалентности представления обыкновенного дифференциального уравнения (ДУ) n -го порядка в виде системы n уравнений 1-го порядка.

Рассмотрим в качестве примера переход от описания модели в виде линейного дифференциального стационарного уравнения 2-го порядка к описанию модели в виде системы двух уравнений 1-го порядка, а затем – к стандартной модели в виде переменных состояния.

Пример. Пусть некая динамическая система описывается линейным ДУ 2-го порядка с постоянными коэффициентами:

Обозначим:

и тогда можно выразить исходное уравнение в виде двух уравнений через состояния z1(t) и z2(t).

Запишем полученную систему из 2-х уравнений 1-го порядка в так называемом векторно-матричном виде:

где z (t) – вектор состояния; x (t) – вектор управления (в данном примере, в частности, x(t) – скаляр).

Это удобная форма записи, т.е. удобная модель динамической системы, использующая понятие переменных состояния zi(t). Такая модель позволяет проследить изменение во времени каждой из составляющих внутренних переменных системы и вывести условия ее управляемости и наблюдаемости (п. 2.7).

Состояние системы отделяет будущее от прошлого, содержит всю информацию о прошлом системы, необходимую для определения реакции на произвольный входной сигнал.

В общем случае n -го порядка исходного линейного ДУ можно записать векторно-матричное уравнение состояния системы

Здесь матрица А (n × n) называется матрицей объекта, а матрица В (n × m), где m – размерность вектора управления – матрицей управления. Такая форма уравнений, разрешенных относительно первых производных, называется стандартной формой.

Не всегда оказывается возможным измерить все состояния системы: z1, z2, …, zn, поэтому вводится уравнение наблюдения, которое позволяет описать, какие из состояний zi и какие из входов xi попадают в вектор наблюдаемых выходных переменных y (t):

,

где z (t) – вектор состояния системы; x (t) – вектор управления; С ­–

матрица наблюдения.

Уравнение наблюдения также является линейным, причем не дифференциальным, а алгебраическим.

В рассмотренном примере 2.4.1 матрица объекта А равна:

ее размерность равна (2 × 2).

Матрица управления В представляет собой вектор-столбец (2 × 1), поскольку вектор управления x(t) в этом примере – скаляр (1 × 1):

Матрица наблюдения С равна единичной матрице:

а матрица D – нулевой:

Уравнения состояния и наблюдения соответствуют структурной схеме (рис. 2.10), где матрицы A, B, C и D указаны как стационарные (с постоянными элементами), хотя в случае нестационарных линейных систем схема останется такой же. Знак обозначает на схеме блок интегрирования: действительно, на входе этого блока находится производная вектора состояния, а на выходе – сам вектор состояния z (t).

 

 

Рис. 2.10. Структурная схема модели линейной стационарной системы управления в переменных состояния

 

Очевидно, что использование модели переменных состояния для анализа многомерных систем требует привлечения теории матриц и линейных векторных пространств.

Более подробный материал по теории матриц можно найти в Приложении 1 в конце данного пособия.

 

Вопросы к разделу 2.4

  1. Какую информацию содержит вектор состояния системы?
  2. Какая теорема позволяет перейти от линейного дифференциального уравнения n -го порядка к векторно-матричному уравнению состояния?
  3. Что описывает уравнение состояния?
  4. Что описывает уравнение наблюдения?
  5. Какова размерность матрицы объекта?
  6. Какова размерность матрицы управления?

 







Date: 2016-02-19; view: 558; Нарушение авторских прав



mydocx.ru - 2015-2024 year. (0.009 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию