![]() Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
![]() Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
![]() |
Общая математическая модель динамической системы
Введем понятие состояния системы как внутренней характеристики системы, значение которой в настоящий момент времени определяет текущее значение выходной величины. Состояние можно рассматривать как некоторое хранилище информации, необходимой для предсказания влияния настоящего на будущее. Обозначим это состояние через z(t), в общем случае это может быть вектор. Систему можно представить в следующем виде (рис. 2.1):
Рис. 2.1. Система, имеющая вход, выход и внутреннее состояние
Вышесказанное означает, что существует такое отображение что где Z – множество всех значений состояния системы; T – множество моментов времени; С помощью этого отображения по вектору состояния в момент времени t можно определить значение вектора выходной величины в этот же момент времени. Это отображение называется отображением выхода. Явная зависимость h от t введена для учета возможности изменения зависимости выхода от состояния с течением времени. Для полноты построения модели системы нужно еще описать связь между вектором входа x(t) и вектором состояния z(t). Для этого вводится параметрическое семейство отображений
заданных для всех значений параметров Такое отображение называется переходным отображением. Математическая модель системы, соответствующая типу «белый ящик», представляет собой задание множеств входов Х, состояний Z и выходов Y, а также связей между ними, задаваемых отображениями s и h: Подобная модель носит также название «вход-состояние-выход» (в отличие от ранее встречавшихся моделей «вход-выход»).
Вопросы к разделу 2.1 1. Что означает с математической точки зрения понятие «состояние системы»? 2. Почему семейство отображений 3. Что с чем связывает отображение выхода? 4. Что с чем связывает переходное отображение? 5. Что являет собой с математической точки зрения модель типа «белый ящик»?
Date: 2016-02-19; view: 497; Нарушение авторских прав |