Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Обоснование задачи исследования согласованных действий
Первоначальное значение термина “корреляции” - взаимная связь (Oxford Advanced Learner's Dictionary of Current English, 1982). Когда говорят о корреляции, используют термины "корреляционная связь” и “корреляционная зависимость”. Корреляционная связь - это согласованные изменения двух признаков или большего количества признаков (множественная корреляционная связь). Корреляционная связь отражает тот факт, что изменчивость одного признака находится в некотором соответствии с изменчивостью другого (Плохинский Н.А., 1970, с. 40). “Стохастическая1 связь имеется тогда, когда каждому из значений одной случайной величины соответствует специфическое (условное) распределение вероятностей значений другой величины, и наоборот, каждому из значений этой другой величины соответствует специфическое (условное) распределение вероятностей значений первой случайной величины” (Суходольский Г.В., 1972, с. 178). Корреляционная зависимость - это изменения, которые вносят значения одного признака в вероятность появления разных значений другого признака. Оба термина - корреляционная связь и корреляционная зависимость - часто используются как синонимы (Плохинский Н.А.,1970; Суходольский Г.В.,1972; Артемьева Е.Ю., Мартынов Е.М.,1975 и др.). Между тем, согласованные изменения признаков и отражающая это корреляционная связь между ними может свидетельствовать не о зависимости этих признаков между собой, а зависимости обоих этих признаков от какого-то третьего признака или сочетания признаков, не рассматриваемых в исследовании. Зависимость подразумевает влияние, связь - любые согласованные изменения, которые могут объясняться сотнями причин. Корреляционные связи не могут рассматриваться как свидетельство причинно-следственной связи, они свидетельствуют лишь о том, что изменениям одного признака, как правило, сопутствуют определенные изменения другого, но находится ли причина изменений в одном из признаков или она оказывается за пределами исследуемой пары признаков, нам неизвестно. Говорить в строгом смысле о зависимости мы можем только в тех случаях, когда сами оказываем какое-то контролируемое воздействие на испытуемых или так организуем исследование, что оказывается возможным точно определить интенсивность не зависящих от нас воздействий. Воздействия, которые мы можем качественно определить или даже измерить, могут рассматриваться как независимые переменные. Признаки, которые мы измеряем и которые, по нашему предположению, могут изменяться под влиянием независимых переменных, считаются зависимыми переменными. Согласованные изменения независимой и зависимой переменной действительно могут рассматриваться как зависимость. Однако, учитывая, что число градаций, или уровней, зависимой переменной обычно невелико, целесообразнее применять в такого рода исследованиях не корреляционный метод, а методы выявления тенденций изменения признака при изменении условий, например, критерии тенденций Н Крускала-Уоллиса и L Пейджа (см. Главы 2 и 3) или метод дисперсионного анализа (см. Главы 7 и 8). Если в исследование включены независимые переменные, которые мы можем по крайней мере учитывать, например, возраст, то можно считать выявляемые между возрастом и психологическими признаками корреляционные связи корреляционными зависимостями. В большинстве же случаев нам трудно определить, что в рассматриваемой паре признаков является независимой, а что - зависимой переменной. Учитывая, что термин “зависимость” явно или неявно подразумевает влияние, лучше пользоваться более нейтральным термином “корреляционная связь". Корреляционные связи различаются по форме, направлению и степени (силе). По форме корреляционная связь может быть прямолинейной или криволинейной. Прямолинейной может быть, например, связь между количеством тренировок на тренажере и количеством правильно решаемых задач в контрольной сессии. Криволинейной может быть, например, связь между уровнем мотивации и эффективностью выполнения задачи (см. Рис. 6.1). При повышении мотивации эффективность выполнения задачи сначала возрастает, затем достигается оптимальный уровень мотивации, которому соответствует максимальная эффективность выполнения задачи; дальнейшему повышению мотивации сопутствует уже снижение эффективности. уровень мотивации тенденции Рнс 6 1 Связь между э^^ектипностью решения задачи и силой мотивационной тенденции (по J W Askmeon, 1974, р 200) По направлению корреляционная связь может быть положительной (“прямой”) и отрицательной (“обратной”). При положительной прямолинейной корреляции более высоким значениям одного признака соответствуют более высокие значения другого, а более низким значениям одного признака - низкие значения другого (см. Рис. 6.2). При отрицательной корреляции соотношения обратные. При положительной корреляции коэффициент корреляции имеет положительный знак, например г=+0,207, при отрицательной корреляции - отрицательный знак, например г=—0,207. Степень, сила или теснота корреляционной связи определяется по величине коэффициента корреляции. Сила связи не зависит от ее направленности и определяется по абсолютному значению коэффициента корреляции. Максимальное возможное абсолютное значение коэффициента корреляции г=1,00; минимальное г=0. Используется две системы классификации корреляционных связей по их силе общая и частная Общая классификация корреляционных связей (по Ивантер Э В, Коросову А В, 1992) Подробное описание этих мер можно найти в руководствах Ве«нецкого И.Г., Кильдишева Г.С.(1968), Плохинского Н.А.(1970), Суходольского J\B.(1972), Ивантер Э.В., Коросова А.В.(1992) и др. В психологических исследованиях чаще всего применяется коэффициент линейной корреляции г Пирсона. Однако этот метод является параметрическим и поэтому не лишен недостатков, свойственных параметрическим методам (см. параграф 1.8). Параметрическими являются также методы определения корреляционного отношения и подсчета множественных коэффициентов корреляции. Кроме того, эти методы, как правило, требуют машинной обработки данных. По этим причинам они остаются за пределами нашего рассмотрения. Все эмпирические меры тесноты связи, кроме коэффициента ранговой корреляции, могут быть заменены методами сопоставления и сравнения, изложенными в Главах 2-5. Ведь что, в сущности, мы доказываем, когда обосновываем различия в долях двух выборок, характеризующихся исследуемым эффектом? Мы показываем, что если испытуемый относится к одной из выборок, то скорее всего он будет характеризоваться какими-то определенными значениями исследуемого признака, а если он относится к другой из двух выборок, то он будет характеризоваться (с большой степенью вероятности) другими значениями исследуемого признака. Фактически мь| исследуем сопряженные изменения двух признаков: отнесенность к той или иной выборке и определенные значения исследуемого признака. Что мы доказываем, с другой стороны, когда два распределения признака оказываются сходными или, наоборот, статистически достоверно различающимися между собой? Мы доказываем, что в обеих выборках частоты встречаемости разных значений признака распределяются согласованно или, наоборот, несогласованно. Мы, правда, скорее определяем меру рассогласованности, чем согласованности, но все же часто метод у} относится к числу методов, выявляющих степень согласованности или даже связи. Методы выявления тенденций уже напрямую заменяют меры эмпирической сопряженности, позволяя нам проследить возрастание значений признака при изменении условий. Фактически мы отвечаем на вопрос о том, согласованно ли изменяются условия и значения исследуемого признака. Быть может, современному психологу не очень просто отказаться от метода подсчета корреляций. Это очень привычно - подсчитывать корреляции. Исторически сложилось так, что этот метод является одним из основных методов статистической обработки. Главное преимущество корреляционного анализа состоит в том, что можно сразу провести множественное сопоставление признаков. Например, нам необходимо определить, с чем связана успешность в какой-либо деятельности. Исследователь может предполагать, что она связана с уровнем интеллектуального развития, с некоторыми из личностных факторов 16-факторного опросника Кеттелла, а может быть, с уровнем эмпатии, тревожности или фрустрационной толерантности, с возрастом самого испытуемого или возрастом матери в момент его рождения и т.д. и т.п. В итоге он получает связи, отражающие среднегрупповые тенденции сопряженного изменения признаков. Но дело как раз в том, что у каждого отдельного испытуемого успешность в данном виде деятельности может определяться разными психологическими характеристиками или разными их сочетаниями. Метод корреляций отдает предпочтение группе, а не отдельному индивиду. Против этого можно возразить, что и все остальные статистические методы отдают предпочтение среднегруппозым, а не индивидуальным тенденциям. Однако это не совсем так. Например, метод тенденций L Пейджа определяет степень согласованности индивидуальных тенденций, критерий %2Г Фридмана—степень совпадения или несовпадения индивидуальных соотношений рангов, биномиальный критерий m - степень отклонения индивидуальных значений от заданных или среднестатистических и т.п. Прежде чем переходить к корреляциям, исследователю необходимо проанализировать полученные данные с помощью критериев сравнения и сопоставления еще и по другой причине. Возможно, размах вариативности признака в обследованной выборке окажется слишком узким, чтобы можно было распространять полученную корреляцию на весь возможный диапазон его значений. Например, может оказаться так, что в обследованной группе по какому-либо из факторов 16-факторного личностного опросника Кеттелла получены лишь низкие и средние значения, и в то же время выявлена значимая положительная связь этого личностного фактора с успешностью профессиональной деятельности. Не учитывая истинного размаха значений в данной выборке, можно экстраполировать полученную связь и на высокие значения фактора, что может оказаться ошибкой. Во-первых, связь данного фактора с успешностью деятельности может на самом деле быть криволинейной, как Date: 2016-02-19; view: 484; Нарушение авторских прав |