Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Отеки и водянки
Отеком называется патологическое скопление жидкости в тканях и межтканевых пространствах вследствие нарушения обмена воды между кровью и тканями. Отек - типовой патологический процесс, встречающийся при многих заболеваниях. Патологическое скопление жидкости в серозных полостях организма называется водянкой (в брюшной полости - асцит, в плевральной полости - гидроторакс, в околосердечной сумке -гидроперикардиум и др.). Скопившаяся в различных полостях и тканях невоспалительная жидкость называется транссудатом. По своим физико-химическим свойствам транссудат существенно отличается от воспалительного выпота - экссудата. Эти отличия имеют практически большое значение для установления природы образующегося выпота (см. гл.9). Механизмы возникновения отеков Обмен жидкости между сосудами и тканями происходит через капиллярную стенку. Эта стенка представляет собой достаточно сложно устроенную биологическую структуру, через которую относительно легко транспортируются вода, электролиты, некоторые органические соединения (мочевина), но значительно труднее - белки. В результате этого концентрации белков в плазме крови (60-80 г/л) и тканевой жидкости (10-30 г/л) неодинаковы. Согласно классической теории Э. Стерлинга (1896) нарушение обмена воды между капиллярами и тканями определяется следующими факторами: 1) гидростатическим давлением крови в капиллярах и давлением межтканевой жидкости; 2) коллоидно-осмотическим давлением плазмы крови и тканевой жидкости; 3) проницаемостью капиллярной стенки. Кровь движется в капиллярах с определенной скоростью и под определенным давлением (рис. 103), в результате чего создаются гидростатические силы, стремящиеся вывести воду из капилляров в интерстициальное пространство. Эффект гидростатических сил будет тем больше, чем выше кровяное давление и чем меньше величина давления тканевой жидкости. Гидростатическое давление крови в артериальном конце капилляра кожи человека составляет 30-32 мм рт. ст. (Ланджи), а в венозном конце - 8-10 мм рт. ст. В настоящее время установлено, что давление тканевой жидкости является величиной отрицательной. Она на 6-7 мм рт. ст. ниже величины атмосферного давления и, следовательно, обладая присасывающим эффектом действия, способствует переходу воды из сосудов в межтканевое пространство. Таким образом, в артериальном конце капилляров создается эффективное гидростатическое давление (ЭГД) - разность между гидростатическим давлением крови и гидростатическим давлением межклеточной жидкости, равное «36 мм рт. ст. (30 - (-6). В венозном конце капилляра величина ЭГД соответствует 14 мм рт. ст. (8-(-6). Удерживают воду в сосудах белки, концентрация которых в плазме крови (60-80 г/л) создает коллоидно-осмотическое давление, равное 25-28 мм рт. ст. Определенное количество белков содержится в межтканевых жидкостях. Коллоидно-осмотическое давление интерстициальной капилляра ' капилляра Гидростатическое давление крови 30 мм рт. ст. 22 мм рт. ст. 8 мм рт. ст. Онкотическое давление крови 28 мм рт. ст. 28 мм рт. ст. 28 мм рт. ст. Рис. 103. Обмен жидкости между различными частями капилляра и тканью (по Э. Старлингу): ра - нормальный перепад гидростатического давления между артериальным (30 мм рт. ст.) и венозным (8 мм рт. ст.) концом капилляра; be - нормальная величина онкотического давления крови (28 мм рт. ст.). Влево от точки.4 (участок АЬ) происходит выход жидкости из капилляра в окружающие ткани, вправо от точки А (участок Ас) происходит ток жидкости из ткани в капилляр (А( - точка равновесия). При повышении гидростатического давления [р'а') или снижении онкотического давления (Ь'с') точка А смещается в положение А, и А2. В этих случаях переход жидкости из ткани в капилляр затрудняется и возникает отек
З.'ЗЙ Часть II. ТИПОВЫЕ ПАТОЛОГИЧЕСКИЕ ПРОЦЕССЫ жидкости для большинства тканей составляет а 5 мм рт. ст. Белки плазмы крови удерживают воду в сосудах, белки тканевой жидкости - в тканях. Эффективная онкотическая всасывающая сила (ЭОВС) - разность между величиной коллоидно-осмотического давления крови и межтканевой жидкости. Она составляет * 23 мм рт. ст. (28 - 5). Если эта сила превышает величину эффективного гидростатического давления, то жидкость будет перемещаться из интерстициаль-ного пространства в сосуды. Если ЭОВС меньше ЭГД, обеспечивается процесс ультрафильтрации жидкости из сосуда в ткань. При выравнивании величин ЭОВС и ЭГД возникает точка равновесия А (см. рис. 103). В артериальном конце капилляров (ЭГД = 36 мм рт. ст., а ЭОВС = 23 мм рт. ст.) сила фильтрации преобладает над эффективной онкотическои всасывающей силой на 13 мм рт. ст. (36-23). В точке равновесия А эти силы выравниваются и составляют 23 мм рт. ст. В венозном конце капилляра ЭОВС превосходит эффективное гидростатическое давление на 9 мм рт. ст. (14-23 = -9), что определяет переход жидкости из межклеточного пространства в сосуд. По Э. Стерлингу, имеет место равновесие: количество жидкости, покидающей сосуд в артериальной части капилляра, должно быть равно количеству жидкости, возвращающейся в со-:уд в венозном конце капилляра. Как показывают расчеты, такого равновесия не происходит: сила фильтрации в артериальном конце капилляра равна 13 мм рт. ст., а всасывающая сила в венозном конце капилляра - 9 мм рт. ст. Это «оджно приводить к тому, что в каждую единицу времени через артериальную часть капилляра в окружающие ткани жидкости выходит большее, чем возвращается обратно. Так оно и происходит - за сутки из кровяного русла в межкле-очное пространство переходит около 20 л жид-всти, а обратно через сосудистую стенку возвращается только 17 л. Три литра транспортируется в общий кровоток через лимфатическую встему. Это довольно существенный механизм оаврата жидкости в кровяное русло, при повреж-■еаии которого могут возникать так называемые вввфатические отеки. Обмен жидкости между капилляром и тка-шю показан на рис. 103. В развитии отеков играют роль следующие аиогенетические факторы: 1. Гидростатический фактор. При возраста- нии гидростатического давления в сосудах (рис. 103, р'а') увеличивается сила фильтрации, а также поверхность сосуда (А; в, а не Ав, как в норме), через которую происходит фильтрация жидкости из сосуда в ткань. Поверхность же, через которую осуществляется обратный ток жидкости (А, с, а не Ас, как в норме), уменьшается. При значительном повышении гидростатического давления в сосудах может возникнуть такое состояние, когда через всю поверхность сосуда осуществляется ток жидкости только в одном направлении - из сосуда в ткань. Происходит накопление и задержка жидкости в тканях. Возникает так называемый механический, или застойный, отек. По такому механизму развиваются отеки при тромбофлебитах, отеки ног у беременных. Этот механизм играет существенную роль при возникновении сердечных отеков и т.д. 2. Коллоидно-осмотический фактор. При уменьшении величины онкотического давления крови (в'с' на рис. 103) возникают отеки, механизм развития которых связан с падением величины эффективной онкотическои всасывающей силы. Белки плазмы крови, обладая высокой гид-рофильностью, удерживают воду в сосудах и, кроме того, в силу значительно более высокой концентрации их в крови по сравнению с межтканевой жидкостью стремятся перевести воду из межтканевого пространства в кровь. Помимо этого увеличивается поверхность сосудистой площади (в'А2, а не вА, как в норме), через которую происходит процесс фильтрации жидкости при одновременном уменьшении резорбционной поверхности сосудов (А2 с', а не Ас, как в норме). Таким образом, существенное уменьшение величины онкотического давления крови (не менее чем на 1/3) сопровождается выходом жидкости из сосудов в ткани в таких количествах, которые не успевают транспортироваться обратно в общий кровоток, даже несмотря на компенсаторное усиление лимфообращения. Происходит задержка жидкости в тканях и формирование отека. Впервые экспериментальные доказательства значения онкотического фактора в развитии отеков были получены Э. Старлингом (1896). Оказалось, что изолированная лапа собаки, через сосуды которой перфузировали изотонический раствор поваренной соли, становилась отечной и прибавляла в массе. Масса лапы и отечность резко уменьшались при замене изотонического
И / ПАТОФИЗИОЛОГИЯ ТИПОВЫХ НАРУШЕНИЙ ОБМЕНА ВЕЩЕСТВ раствора поваренной соли на белковосодержащий раствор сыворотки крови. Онкотический фактор играет важную роль в происхождении многих видов отеков: почечных (большие потери белка через почки), печеночных (снижение синтеза белков), голодных, ка-хектических и др. По механизму развития такие отеки называются онкотическими. 3. Проницаемость капиллярной стенки. Увеличение проницаемости сосудистой стенки способствует возникновению и развитию отеков. Такие отеки по механизму развития называются мембраногенными. Однако повышение проницаемости сосудов может привести к усилению как процессов фильтрации в артериальном конце капилляра, так и резорбции в венозном конце. При этом равновесие между фильтрацией и резорбцией воды может и не нарушаться. Поэтому здесь большое значение имеет повышение проницаемости сосудистой стенки для белков плазмы крови, вследствие чего падает эффективная онкотическая всасывающая сила в первую очередь за счет увеличения онкотического давления тканевой жидкости. Отчетливое повышение проницаемости капиллярной стенки для белков плазмы крови отмечается, например, при остром воспалении - воспалительный отек. Содержание белков в тканевой жидкости при этом резко нарастает в первые 15-20 мин после действия патогенного фактора, стабилизируется в течение последующих 20 мин, а с 35-40-й мин начинается вторая волна увеличения концентрации белков в ткани, связанная, по-видимому, с нарушением лимфотока и затруднением транспорта белков из очага воспаления (см. гл.9). Нарушение проницаемости сосудистых стенок при воспалении связано с накоплением медиаторов повреждения, а также с расстройством нервной регуляции тонуса сосудов. Проницаемость сосудистой стенки может повышаться при действии некоторых экзогенных химических веществ (хлор, фосген, дифосген, люизит и др.), бактериальных токсинов (дифтерийный, сибиреязвенный и др.), а также ядов различных насекомых и пресмыкающихся (комары, пчелы, шершни, змеи и др.). Под влиянием воздействия этих агентов, помимо повышения проницаемости сосудистой стенки, происходит нарушение тканевого обмена и образование продуктов, усиливающих набухание коллоидов и повышающих осмотическую концент- рацию тканевой жидкости. Возникающие при этом отеки называются токсическими. К мембраногенным отекам относятся также нейрогенные и аллергические отеки. 4. Лимфообращение. Затруднение транспорта жидкости и белков по лимфатической системе из интерстициального пространства в общий кровоток создает благоприятные условия для задержки воды в тканях и развития отеков. Так, например, при повышении давления в системе верхней полой вены (недостаточность правого сердца, сужение устья полых вен) возникает мощный прессорный рефлекс на лимфатические сосуды организма, вследствие чего затрудняется отток лимфы из тканей. Нарушение лимфообращения является одним из важных механизмов развития отека при сердечной недостаточности. При значительном понижении содержания белков в крови (ниже 40 г/л), например при не-фротическом синдроме, линейная и объемная скорости лимфотока возрастают в несколько раз. Однако, несмотря на это, вследствие чрезвычайно интенсивной фильтрации жидкости из сосудов в ткани (см. роль коллоидно-осмотического фактора) лимфатическая система не в состоянии возвращать в общий кровоток столь значительные объемы тканевой жидкости. В связи с перегрузкой транспортных возможностей лимфатических путей возникает так называемая динамическая лимфатическая недостаточность. В формировании отеков при нефротическом синдроме этот патогенетический фактор играет важную роль (схема 20). В некоторых случаях роль лимфатического фактора в механизме развития отеков настолько непосредственна и велика, что выделяют так называемые лимфатические отеки. Примером может служить слоновость (elephantiasis). Заболевание встречается преимущественно в тропических странах и возникает вследствие механической закупорки лимфатических сосудов круглыми паразитическими червями - филяри-ями. Развивающаяся при этом механическая лимфатическая недостаточность является ведущим патогенетическим механизмом формирования сильнейшей отечности конечностей (масса одной нижней конечности может достигать 50 кг и более), половых органов и других частей тела (по типу анасарки). Заболевание быстро приводит к инвалидности (рис. 104). Date: 2015-05-23; view: 655; Нарушение авторских прав |