Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Волновая функция
Дифракционная картина, наблюдаемая для микрочастиц, характеризуется неодинаковым распределением рассеянных частиц по разным направлениям. С точки зрения волновой теории это означает, что направлениям максимумов соответствует наибольшая интенсивность волн де Бройля, а минимумам – наименьшая. Т.е. интенсивность волны де Бройля в данной точке пространства определяет число частиц, попавших в эту точку. Т.о. дифракционная картина для микрочастиц является проявлением статистической закономерности. Это означает, что описание поведения микрочастиц должно носить вероятностный характер, что и является важнейшей отличительной особенностью квантовой механики от классической. Состояние микрочастиц в квантовой механике описывается с помощью, так называемой, волновой функции вида ψ = f(x,y,z,t). Ее называют еще ψ-функция. Квадрат модуля ψ-функции определяет вероятность обнаружения частицы в момент времени t в области с координатами: x и x + d x; y и y + d y; z и z + d z – т.е. в элементе объема dV = d x d y d z: dW = | ψ |2 dV. (10)
Величина | ψ |2 = dW /dV – имеет смысл плотности вероятности, т.е. определяет вероятность нахождения частицы в единичном объеме в окрестностях точки с координатами x,y,z. Т.о. физический смысл имеет не сама ψ-функция, а квадрат её модуля – |ψ|2, которым и задается интенсивность волн де Бройля. Теперь вероятность найти частицу в момент времени t в объеме V будет: . (11) Очевидно, что объективность существования частицы во времени и в пространстве будет выражаться вероятностью достоверного события: . (12) Это соотношение является условием нормировки ψ- функции. Волновая функция позволяет рассчитать вероятность реализации тех или иных значений параметров микрообъекта или их средние величины, например, расстояние электрона от ядра атома или вероятность перехода электрона с одного энергетического уровня на другой, что в свою очередь позволяет оценить относительную интенсивность спектральных линий. Что бы ψ-функция являлась объективной характеристикой состояния микрочастицы она должна удовлетворять следующим условиям: быть 1) конечной, т.к. W ≤ 1; 2) однозначной, т.к. вероятность не может быть неоднозначной; 3) непрерывной, т.к. вероятность не может изменяться скачком.
Date: 2015-05-19; view: 399; Нарушение авторских прав |