Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






И собственные значения





 

Собственная функция оператора определяется уравнению

 

, (2.8)

 

собственное значение оператора. Т.е. под действием оператора его собственная функция восстанавливается с точностью до постоянного множителя, который называется собственным значением.

Физический смысл – если система находится в состоянии , то измерение величины A, описываемой оператором , дает однозначный результат .

Спектр оператора – это множество его собственных значений .

Если счетное, то спектр дискретный.

Если образует непрерывный набор, то спектр непрерывный.

Если k разных собственных функций имеют одинаковые собственные значения, то спектр k- кратно вырожден.

Коммутирующие операторы имеют одинаковый набор собственных функций, соответствующие физические величины одновременно имеют определенные значения.

Доказательство:

Пусть – собственная функция , тогда

 

.

 

Действуем оператором на обе стороны равенства

 

.

 

Учитываем коммутативность операторов

 

,

получаем

.

 

Следовательно, – собственная функция , пропорциональная :

 

.

 

В результате – собственная функция с собственным значением .

 

Оператор координаты. Пусть – собственная функция с собственным значением , тогда

 

 

Верхнее равенство записано по определению оператора координаты, нижнее – по определению собственной функции. В результате

 

 

Сравниваем с фильтрующим свойством дельта-функции

 

,

находим

.

Функция равна нулю во всех точках, кроме , x 0 – любое вещественное число, спектр x 0 непрерывный. Вид функции согласуется с физическим смыслом состояния, что оправдывает выбор формы оператора координаты.

Как показано далее условие ортонормированности для непрерывного спектра имеет вид

.

Подстановка дает

.

 

Откуда , тогда собственная функция оператора координаты, или волновая функция частицы, находящейся в точке x 0 оси x:

 

. (2.9)

 

Оператор импульса. Уравнение на собственную функцию дает

 

 

Получили дифференциальное уравнение первого порядка

 

.

Разделяем переменные

,

интегрируем

,

находим

.

 

Результат совпадает с координатной зависимостью плоской волны де Бройля

, (1.11)

 

описывающей движение частицы с постоянным импульсом. Это оправдывает выбор формы оператора импульса. Ограниченность вероятности |Ψ р (x)|2 при любых x требует вещественности р, в результате спектр непрерывный. Условие ортонормированности для непрерывного спектра

 

дает

.

Используя

,

находим . Тогда собственная функция оператора импульса, или волновая функция частицы, движущейся с импульсом p вдоль оси x, равна

. (2.10)

 







Date: 2015-05-19; view: 450; Нарушение авторских прав



mydocx.ru - 2015-2024 year. (0.008 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию