Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Качественное понятие о туннельном эффекте





В рамках классической механики априорно ясно, что любое материальное тело, имеющее энергию E, не может преодолеть потенциальный барьер высотой V0, если V0 > E. При падении тела на такой барьер оно может лишь отразиться от него. Это утверждение находится в полном согласии с законом сохранения энергии.

Однако если в качестве материального тела рассмотреть электрон, то нельзя оставаться в рамках классической механики. Действительно, хорошо известно, что электрону присущи как корпускулярные, так и волновые свойства. Длина волны де Бройля для материального тела с массой m и скоростью u описывается соотношением, где " = h / (2p), а h - постоянная Планка. Если масса m экстремально мала и скорость u неэкстремально велика, то длина волны де Бройля может быть немала. Так, например, для электрона, имеющего кинетическую энергию порядка 1 эВ, величина lD порядка 10ra ~ 10- 7 см, где ra - боровский радиус. В атомных масштабах это очень большая величина - на порядок превышающая размер атома!

 

Если ширина потенциального барьера R ≠ lD, то электрон с определенной вероятностью может при падении на барьер оказаться с другой его стороны, электрон протуннелирует через барьер, не изменив своей энергии. В этом качественно состоит сущность туннельного эффекта.

В тех случаях, когда потенциальный барьер создается внешним полем, оно может иметь столь большую напряженность, что вершина потенциального барьера будет ниже энергии частицы. С точки зрения классической механики, очевидно, что при этом частица оказывается свободной и с вероятностью, равной единице, уходит. Однако квантовая механика показывает, что это не так. Те же причины, которые обусловливают подбарьерное туннелирование, обусловливают и надбарьерное отражение частицы. При высоте барьера, равной энергии частицы, вероятность прохождения равна вероятности отражения, то есть равна половине. Вероятность прохождения, равная единице, достигается при большом превышении E над V.

Может ли мяч пролететь сквозь стенку, да так, чтобы и стенка осталась стоять на месте неразрушенной, и энергия мяча при этом не изменилась? Конечно, нет, напрашивается ответ, в жизни такого не бывает.

Расстояние до ядра

Для того чтобы протон приблизился к ядру, необходимо затратить энергию.

Для того чтобы пролететь сквозь стенку, мяч должен иметь достаточный запас энергии и проломить ее. Точно так же, если нужно, чтобы мяч, находящийся в ложбинке, перекатился через горку, необходимо сообщить ему запас энергии, достаточный для преодоления потенциального барьера — разности потенциальных энергий мяча на вершине и в ложбинке. Тела, движение которых описывается законами классической механики, преодолевают потенциальный барьер только тогда, когда они обладают полной энергией, большей, чем величина максимальной потенциальной энергии.

А как обстоит дело в микромире? Микрочастицы подчиняются законам квантовой механики. Они не двигаются по определенным траекториям, а «размазаны» в пространстве, подобно волне. Эти волновые свойства микрочастиц приводят к неожиданным явлениям, и среди них едва ли не самое удивительное — туннельный эффект.

Оказывается, что в микромире «стенка» может остаться на месте, а электрон, как ни в чем не бывало, пролетает сквозь нее. Микрочастицы преодолевают потенциальный барьер, даже если их энергия меньше, чем его высота.

Потенциальный барьер в микромире часто создают электрические силы, и впервые с этим явлением столкнулись при облучении атомных ядер заряженными частицами. Положительно заряженной частице, например протону, невыгодно приближаться к ядру, так как, по закону Кулона, между протоном и ядром действуют силы отталкивания. Поэтому для того, чтобы приблизить протон к ядру, надо совершить работу. Правда, достаточно протону вплотную подойти к ядру (на расстояние ~10~12 см), как тут же вступают в действие мощные ядерные силы притяжения (сильное взаимодействие) и он захватывается ядром. Но ведь надо сначала подойти, преодолеть потенциальный барьер.

И вот оказалось, что протон это делать умеет, даже когда его энергия Е меньше высоты барьера Un.

Туннельный контакт под напряжением.

Как всегда в квантовой механике, при этом нельзя сказать с достоверностью, что протон проникнет в ядро. Но имеется определенная вероятность такого туннельного прохождения потенциального барьера. Эта вероятность тем больше, чем меньше разность энергии U0 — Е и чем меньше масса частицы т (причем зависимость вероятности от величины U0 — Е и т очень резкая — экспоненциальная).

 







Date: 2015-05-19; view: 670; Нарушение авторских прав



mydocx.ru - 2015-2024 year. (0.006 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию