![]() Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
![]() Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
![]() |
Прочностные свойства наноматериалов
Механические свойства нано-кристаллических материалов существенно зависят от размера зерен. При больших размерах зерен рост прочности и твердости с уменьшением размера зерен обусловлен введением дополнительных границ зерен, которые являются препятствиями для движения дислокаций, а при наноразмерных зернах рост прочности обусловлен низкой плотностью существующих дислокаций и трудностью образования новых дислокаций. Микротвердость нанокристаллических материалов в 2—7 раз выше, чем твердость крупнозернистых аналогов, причем это не зависит от метода получения материала. В ряде работ наблюдали падение твердости с уменьшением размера зерна ниже некоторого критического размера (рис. 10), что связывают с увеличением доли тройных стыков границ зерен. Рис.10 Прочность нанокристаллических металлических материалов при растяжении существенно превышает прочность крупнозернистых аналогов, как для чистых металлов, так и для сплавов, при этом значение пластичности достаточно высоки, что, по-видимому, является следствием значительной зернограничной деформации (рис.11). Рис.11 Механические свойства СМК и НК материалов значительно превышают механические свойства крупнозернистых аналогов. Например, предел текучести и микротвердость НК меди в 4 раза выше, чем для крупнозернистой (КЗ) меди. В табл. 2 приведены механические свойства КЗ, СМК и НК материалов. Из представленных данных видно, что при комнатной температуре прочностные свойства СМК и НК материалов выше, чем для КЗ материалов, а при повышенных температурах КЗ материалы имеют более высокую прочность. Важно, что пластичность СМК и НК материалов остается на достаточно высоком уровне. Основным механизмом деформации СМК и НК сплавов при низких температурах является дислокационное скольжение, сопровождающееся действием аккомодационного механизма — зернограничного проскальзывания. Таблица 2.
Материалы с СМК и НК структурой проявляют высокоскоростную и низкотемпературную сверхпластичность. Например, относительное удлинение до разрушения никеля с размером зерна 35 нм при скорости деформации 10-2 с-1 и температуре 420°С составило около 1000%. Снижение температуры и повышение скорости сверхпластической деформации обусловлено ускорением динамической активности таких процессов в неравновесных границах зерен, как зернограничное проскальзывание и аккомодационная диффузия. Износостойкость наноструктурных металлических материалов значительно выше износостойкости крупнозернистых сплавов. Так, при уменьшении размера зерна в никеле от 10 мкм до 10 нм скорость износа уменьшается от 1330 до 7,9 мкм3/мкм.
СТАЛИ
Коррозионно-стойкая аустенитная сталь 12Х18Н10Т после равно-канального углового прессования при комнатной температуре с размером зерна 100 нм имеет предел текучести 1340 МПа, практически в 6 раз превышающий предел текучести этой стали после термообработки. При этом пластичность сохраняется на достаточно высоком для такой прочности уровне δ=27%. Прочность низкоуглеродистых малолегированных сталей с СМК структурой при комнатной температуре в 2—2,5 раза выше, чем серийно выпускаемых, при сохранении удовлетворительной пластичности и высокой вязкости. Такие стали сочетают высокие прочностные свойства и высокие показатели пластичности и ударной вязкости при отрицательных температурах, поэтому они могут эффективно применяться, например, для изготовления деталей машин, работающих в условиях Крайнего Севера.
Date: 2015-05-08; view: 1707; Нарушение авторских прав |