Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
И интегрирующих цепей
Целью работы является практическое ознакомление с пассивными и активными дифференцирующими и интегрирующими цепями – как со схемами, преобразующими форму импульсных сигналов, так и как с фильтрами.
После окончания входного импульса (начиная с момента τи) конденсатор разряжается. Ток разряда (большой вначале) постепенно убывает. Поскольку разрядный ток течет в противоположном направлении (по сравнению с зарядным), то он создает на R, а значит на выходе схемы, так называемый обратный выброс – импульс полярности, противоположной знаку входного сигнала. Обратный выброс представляет опасность для некоторых видов нагрузки, и тогда его устраняют с помощью диодного ограничителя. Процессы в ДЦ иллюстрируют диаграммы напряжений (рис. 1.2). Возможны два варианта: 1) конденсатор успевает полностью зарядиться до окончания входного импульса, т. е. 3τ < τи; в этом случае выходной сигнал представляет собой пару коротких импульсов, сдвинутых друг относительно друга, имеющих одинаковые амплитуды и противоположную полярность (рис. 1.2, а); 2) конденсатор не успевает полностью зарядиться (3τ > τи), поэтому разряд начинается не с − U 0, а с уровня − UC m, инверсного достигнутому при заряде; обратный выброс имеет амплитуду − UC m меньшую, чем входной сигнал (рис. 1.2, б).
а б Рис. 1.2 Из этих вариантов процедуре дифференцирования соответствует только первый, так как в этом случае преобразование формы сигнала цепью похоже на математический результат получения производной. Степень соответствия выходного сигнала ДЦ идеальному дифференцированию оценивают с помощью параметра, называемого ошибкой (погрешностью, %) дифференцирования: εд = (3τ /τи) ∙100. Пассивная ДЦ при подаче на ее вход гармонического сигнала выполняет функции, отличные от преобразования формы сигнала. Емкости C соответствует сопротивление XC = 1/(2π fC), убывающее с ростом частоты. R и XC образуют делитель из двух сопротивлений, коэффициент деления которого имеет вид R /(R − jXC). Коэффициент деления делителя совпадает с коэффициентом передачи схемы КU.. При f = 0 XC → ∞, поэтому коэффициент передачи дачи делителя равен 0, иначе говоря, сигнал со входа схемы на ее выход не проходит. При f → ∞ XC = 0, конденсатор пропускает сигнал со входа на выход без потерь и КU = 1. ДЦ является фильтром высоких частот.
Для обеспечения высокого качества интегрирования необходимо заряжать конденсатор как можно медленнее, так как только начальный участок экспоненты близок к линейной функции (интегралом от постоянной величины является линейная функция).
Ошибка интегрирования [%] определяется как εи = (τи/3τ) ∙100. Эта формула является обратной по отношению к выражению для εд. К сожалению, улучшение качества интегрирования в пассивной ИЦ сопровождается снижением амплитуды U выx, и при очень малых εи сигнал может быть утрачен. Пассивная ИЦ при подаче на ее вход гармонического сигнала выполняет функции фильтра низких частот(ФНЧ). Как и в ДЦ, резистор R и XC образуют делитель из двух сопротивлений, но в ИЦ коэффициент деления равен (− jXC)/(R − jXC). При f = 0 XC → ∞, поэтому коэффициент передачи делителя равен 1, при f → ∞ XC = 0, конденсатор шунтирует выход схемы и КU = 0. Схемы активных дифференцирующей и интегрирующей цепей на базе операционного усилителя приведены, соответственно, на рис. 1.5, а и б. В общем виде передаточная характеристика таких цепей в диапазоне рабочих частот ОУ может быть описана соотношением K (jf) = − Z о.с(jf)/ Z вх(jf), где Z о.с и Z вх – комплексные сопротивления цепи обратной связи и входной цепи соответственно. Формула является приближенной, так как не учитывает тот факт, что коэффициент усиления ОУ имеет хотя и огромное, но все же конечное значение.
В цепи на рис. 1.5, а Z о.с(jf) = R, а Z вх(jf) = 1/ j 2π fС, т. е. K (jf) = j 2π fСR, цепь является фильтром высоких частот, а с точки зрения преобразования формы сигнала – дифференцирующей. Аналогично, цепь рис. 1.5, б имеет передаточную характеристику K (jf) = 1/ j 2π fСR, т.е. является фильтром низких частот, а значит, интегрирующей цепью. Достоинствами активных дифференцирующих и интегрирующих цепей по сравнению с пассивными являются большая точность выполнения соответствующих математических функций, а также возможность одновременно усиливать сигнал и преобразовывать его форму. Описание лабораторной установки. В состав лабораторной установки входят лабораторный макет, генератор (формирующий гармонические сигналы, а также последовательности прямоугольных импульсов типа меандра), два вольтметра переменного напряжения и осциллограф. Галетный переключатель позволяет поочередно исследовать различные дифференцирующие и интегрирующие цепи; параметры цепей можно изменять с помощью коммутаций элементов R и С на лицевой панели макета. Порядок выполнения работы: 1. Подать напряжения питания +15 и –15 В на макет. 2. Исследовать пассивные и активные дифференцирующие и интегрирующие цепи как фильтры: а) измерить амплитудно-частотные характеристики цепей в диапазоне частот (f) 10 Гц…1 МГц. Параметры цепей (значения R и С) устанавливать по указанию преподавателя; б) определить граничные частоты (f гр) исследованных цепей, исходя из условия K (f гр) ≈ 0,7 [max K (f)]. 3. Исследовать пассивные и активные дифференцирующие и интегри-рующие цепи как преобразователи формы импульсов: а) для этого подать с генератора на входы различных цепей сигналы в виде меандра с различной длительностью импульсов (τи), зарисовать с экрана осциллографа или сфотографировать форму сигналов на выходах цепей; б) определить ошибки дифференцирования и интегрирования (εд и εи). Содержание отчета: 1. Схемы соединения приборов при измерениях. 2. Схемы исследованных дифференцирующих и интегрирующих цепей. 3. Результаты измерений и расчетов по п. п. 2,3 (графики АЧХ, значения f гр, форма выходных сигналов с указанием τи, значения εд и εи). 4. Выводы. Date: 2015-05-08; view: 1051; Нарушение авторских прав |