Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Задачи к теме 2 «Основные теоремы теории вероятностей»
1. Из колоды в 36 карт наудачу одна за другой извлекают две карты. Найти вероятность того, что ими окажутся: а) две дамы; б) туз и дама; в) две карты трефовой масти?
2. Вероятность того, что покупатель, собирающийся приобрести компьютер и пакет прикладных программ, приобретет только компьютер, равна 0,65. Вероятность того, что покупатель купит только пакет программ, равна 0,15. Вероятность того, что будет куплен и компьютер, и пакет программ, равна 0,35. Чему равна вероятность того, что будет куплен или компьютер, или пакет программ, или компьютер и пакет программ вместе?
3. Аудиторская фирма размещает рекламу в журнале “Коммерсант”. По оценкам фирмы 55% людей, читающих журнал, являются потенциальными клиентами фирмы. Выборочный опрос читателей журнала показал также, что 70% людей, которые читают журнал, помнят о рекламе фирмы, помещенной в конце журнала. Оцените, чему равна доля людей, которые являются потенциальными клиентами фирмы и могут вспомнить ее рекламу?
4. О двух акциях А и В известно, что они эмитированы предприятиями одной и той же отрасли. Вероятность того, что акция А поднимется завтра в цене, равна 0,25. Вероятность того, что обе акции А и В поднимутся завтра в цене, равна 0,14. Предположим, что Вы знаете, что акция А поднимется в цене завтра. Чему равна вероятность того, что и акция В завтра поднимется в цене?
5. Инвестор предполагает, что в следующем периоде вероятность роста цены акций компании N будет составлять 0,8, а компанииМ - 0,5. Вероятность того, что цены поднимутся на те и другие акции равна 0,4. Вычислите вероятность роста цен на акции или компании N или компании М, или обеих компаний вместе.
6. В фирме 600 работников, 420 из них имеют высшее образование, а 340 - среднее специальное образование, 286 сотрудников имеют и высшее и среднее специальное образование. Чему равна вероятность того, что случайно выбранный работник имеет или среднее специальное, или высшее образование, или и то и другое? 7. Финансовый аналитик предполагает, что, если норма (ставка) процента упадет за определенный период, то вероятность того, что рынок акций будет расти в это же время, равна 0,60. Аналитик также считает, что норма процента может упасть за этот же период с вероятностью 0,50. Используя полученную информацию, определите вероятность того, что в течение обсуждаемого периода рынок акций будет расти, а норма процента падать?
8. Для компании, занимающейся строительством терминалов для аэропортов, вероятность получить контракт в стране А, равна 0,8, вероятность выиграть его в стране В, равна 0,3. Вероятность того, что контракты будут заключены и в стране А, и в стране В, равна 0,24. Чему равна вероятность того, что компания получит контракт хотя бы в одной стране?
9. Готовясь к зачету, студент выучил 20 из 30 вопросов программы. а) Какова вероятность того, что студент сдаст зачет, если для этого необходимо ответить на 2 случайно выбранных вопроса? Какова вероятность, что он не сдаст зачет?
10.Вероятность того, что любой из четырех паевых инвестиционных фондов покажет положительную доходность в определенном временном промежутке, оценивается равной 0,6. Чему равна вероятность того, что инвестор, имеющий паи в четырех различных фондах получит доход хотя бы по одному паю?
11. Вероятность того, что потребитель увидит рекламу определенного продукта по любому из трех центральных телевизионных каналов, равна 0,15. Предполагается, что эти события - независимы в совокупности. Чему равна вероятность того, что потребитель увидит рекламу: а) по всем трем каналам? б) хотя бы по одному из этих каналов? в) только по одному каналу?
12. Два студента при подготовке к зачету выучили соответственно: первый – 20 из 30 вопросов программы, второй – 25 из 30 вопросов программы. Для сдачи зачета необходимо ответить на 2 случайно выбранных вопроса. Имея эту информацию определить вероятности следующих событий: а) оба студента сдадут зачет; б) или первый или второй студенты сдадут зачет; в) только один студент сдаст зачет; г) ни один студент не сдаст зачет.
13. Покупатель может приобрести акции трех компаний А, В и С. Надежность первой оценивается экспертами на уровне 90%, а второй - 80%, третьей – 70%. Чему равна вероятность того, что: а) три компании в течение года не станут банкротами? б) наступит хотя бы одно банкротство? в) только одна компания обанкротится?
14. В магазин бытовой техники поступила партия телевизоров: 20 телевизоров «Sony», 10 телевизоров «Panasonic» и 30 телевизоров «Samsung». Из партии случайным образом выбраны два телевизора для специального тестирования. Какова вероятность того, что а) один из них – телевизор «Samsung»? б) оба телевизора изготовлены одной фирмой?
15. В городе три коммерческих банка, оценка надежности, которых - 0,9, 0,7 и 0,6 соответственно. В связи с определением хозяйственных перспектив развития города администрацию интересуют ответы на следующие вопросы: а) какова вероятность того, что в течение года обанкротятся все три банка? б) не обанкротится хотя бы один банк? в) обанкротится только один банк? г) обанкротятся только два банка?
16. При покупке товаров на сумму, превышающую 500 рублей, покупателю предлагают билет беспроигрышной лотереи. В лотерее разыгрываются призы двух видов: 70 призов первого вида и 30 призов второго вида. Какова вероятность того, что первый покупатель, сделавший соответствующую покупку и получивший 3 лотерейных билета, станет обладателем: а) одинаковых призов? б) хотя бы двух призов первого вида? в) трех призов второго вида?
17. В командном зачете автогонок лидируют три команды. В случае если гоночный болид сойдет с трассы команда не получит зачетных очков. Эксперты оценивают вероятность схода болида первой команды как 0,1, второй – 0,15, третьей – 0,2. Определите вероятность того, что а) к финишу придут все болиды? б) хотя бы один болид? в) два болида сойдут с трассы?
18. В урне 12 белых, 5 красных и 3 черных шара. Наудачу вынимается три шара. Найдите вероятность того, что а) все шары будут красными? б) хотя бы один шар будет черным? в) два шара будут белыми?
19. Игральная кость бросается трижды. Определить вероятность того, что: а) хотя бы один раз выпадет 5 очков; б) три раза выпадет 6 очков; в) два раза выпадет 3 очка. 20. Строительная фирма ищет краску определенного цвета. Курьер звонит в 4 строительных магазина. Вероятность наличия необходимой краски в первом магазине равна 0,9, во втором – 0,92, в третьем – 0,8, в четвертом – 0,7. Какова вероятность того, что а) хотя бы в одном магазине окажется краска нужного цвета? б) во всех магазинах окажется краска нужного цвета? в) ни в одном магазине не окажется краски нужного цвета?
Date: 2015-05-08; view: 1398; Нарушение авторских прав |