Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Статистический критерий - это правило (формула), по которому определяется мера расхождения результатов выборочного наблюдения с высказанной гипотезой Н0





Статистический критерий, как и всякая функция от результатов наблюдения, является случайной величиной и в предположении справедливости нулевой гипотезы Н0 подчинена некоторому хорошо изученному (и затабулированному) теоретическому закону распределения с плотностью распределения f(k).

Выбор критерия для проверки статистических гипотез может быть осуществлен на основании различных принципов. Чаще всего для этого пользуются принципом отношения правдоподобия, который позволяет построить критерий наиболее мощный среди всех возможных критериев. Суть его сводится к выбору такого критерия К с известной функцией плотности f(k) при условии справедливости гипотезы Н0, чтобы при заданном уровнем значимости α можно было бы найти критическую точку Ккр. распределения f(k), которая разделила бы область значений критерия на две части: область допустимых значений, в которой результаты выборочного наблюдения выглядят наиболее правдоподобными, и критическую область, в которой результаты выборочного наблюдения выглядят менее правдоподобными в отношении нулевой гипотезы Н0.

Если такой критерий К выбран, и известна плотность его распределения, то задача проверки статистической гипотезы сводится к тому, чтобы при заданном уровне значимости α рассчитать по выборочным данным наблюдаемое значение критерия Кнабл. и определить является ли оно наиболее или менее правдоподобным в отношении нулевой гипотезы Н0.

Проверка каждого типа статистических гипотез осуществляется с помощью соответствующего критерия, являющегося наиболее мощным в каждом конкретном случае. Например, проверка гипотезы о виде закона распределения случайной величины может быть осуществлена с помощью критерия согласия Пирсона χ2; проверка гипотезы о равенстве неизвестных значений дисперсий двух генеральных совокупностей - с помощью критерия F - Фишера; ряд гипотез о неизвестных значениях параметров генеральных совокупностей проверяется с помощью критерия Z - нормальной распределенной случайной величины и критерия T - Стьюдента и т.д.

Значение критерия, рассчитываемое по специальным правилам на основании выборочных данных, называется наблюдаемым значением критерия (Кнабл.).

Значения критерия, разделяющие совокупность значений критерия на область допустимых значений (наиболее правдоподобных в отношении нулевой гипотезы Н0) и критическую область (область значений, менее правдоподобных в отношении таблицам распределения случайной величины К, выбранной в качестве критерия, называются критическими точками(Ккр.).

Областью допустимых значений (областью принятия нулевой гипотезы Н0) называют совокупность значений критерия К, при которых нулевая гипотеза Н0 не отклоняется.

Критической областью называют совокупность значений критерия К, при которых нулевая гипотеза Н0 отклоняется в пользу конкурирующей Н1.

Различают одностороннюю (правостороннюю или левостороннюю) и двустороннюю критические области.

Если конкурирующая гипотеза - правосторонняя, например, Н1: а > а0, то и критическая область - правосторонняя (рис 1). При правосторонней конкурирующей гипотезе критическая точка кр. правосторонняя) принимает положительные значения.

Если конкурирующая гипотеза - левосторонняя, например, Н1: а < а0, то и критическая область - левосторонняя (рис 2). При левосторонней конкурирующей гипотезе критическая точка принимает отрицательные значения кр. левосторонняя).

Если конкурирующая гипотеза - двусторонняя, например, Н1: а ¹ а0, то и критическая область - двусторонняя (рис 3). При двусторонней конкурирующей гипотезе определяются две критические точки кр. левосторонняя и Ккр. правосторонняя).

 

 
 

 


Область допустимых Критическая

значений область

К

0 Ккр.

 

Рис 8.1. Правосторонняя критическая область.

 

 

 
 

 


Критическая Область допустимых

область значений

К

кр. 0 Ккр.

 

Рис 8.2. Левосторонняя критическая область.

 

 

 
 

 


Критическая Область допустимых Критическая

область значений область

 

К

кр. 0 Ккр.

 

Рис 8.3. Двусторонняя критическая область.

Основной принцип проверки статистических гипотез состоит в следующем:

- если наблюдаемое значение критерия (Кнабл.) принадлежит критической области, то нулевая гипотеза Н0 отклоняется в пользу конкурирующей Н1;

- если наблюдаемое значение критерия (Кнабл.) принадлежит области допустимых значений, то нулевую гипотезу Н0 нельзя отклонить.


Можно принять решение относительно нулевой гипотезы Н0 путем сравнения наблюдаемого набл.) и критического значений критерия кр.).

При правосторонней конкурирующей гипотезе:

Если Кнабл. £ Ккр., то нулевую гипотезу Н0 нельзя отклонить;

если Кнабл. > Ккр., то нулевая гипотеза Н0 отклоняется в пользу конкурирующей Н1.

При левосторонней конкурирующей гипотезе:

Если Кнабл. ³ - Ккр., то нулевую гипотезу Н0 нельзя отклонить;

если Кнабл. < - Ккр., то нулевая гипотеза Н0 отклоняется в пользу конкурирующей Н1.

При двусторонней конкурирующей гипотезе:

Если - Ккр. £ Кнабл. £ Ккр., то нулевую гипотезу Н0 нельзя отклонить;

если Кнабл. > Ккр. или Кнабл. < - Ккр., то нулевая гипотеза Н0 отклоняется в пользу конкурирующей Н1.

Алгоритм проверки статистических гипотез сводится к следующему:

1. Сформулировать нулевую Н0 и альтернативную Н1 гипотезы;

2. Выбрать уровень значимости a;

3. В соответствии с видом выдвигаемой нулевой гипотезы Н0 выбрать статистический критерий для ее проверки, т.е. - специально подобранную случайную величину К, точное или приближенное распределение которой заранее известно;

4. По таблицам распределения случайной величины К, выбранной в качестве статистического критерия, найти его критическое значение Ккр. (критическую точку или точки);

5. На основании выборочных данных по специальному алгоритму вычислить наблюдаемое значение критерия Кнабл.;

6. По виду конкурирующей гипотезы Н1 определить тип критической области;

7. Определить, в какую область (допустимых значений или критическую) попадает наблюдаемое значение критерия Кнабл., и в зависимости от этого - принять решение относительно нулевой гипотезы Н0.

Следует заметить, что даже в том случае, если нулевую гипотезу Н0 нельзя отклонить, это не означает, что высказанное предположение о генеральной совокупности является единственно подходящим: просто ему не противоречат имеющиеся выборочные данные, однако таким же свойством наряду с высказанной могут обладать и другие гипотезы.

Можно интерпретировать результаты проверки нулевой гипотезы следующим образом:

- если в результате проверки нулевую гипотезу Н0 нельзя отклонить, то это означает, что имеющиеся выборочные данные не позволяют с достаточной уверенностью отклонить нулевую гипотезу Н0, вероятность нулевой гипотезы Н0 больше α, а конкурирующей Н1 - меньше 1 - α;

- если в результате проверки нулевая гипотеза Н0 отклоняется в пользу конкурирующей Н1, то это означает, что имеющиеся выборочные данные не позволяют с достаточной уверенностью принять нулевую гипотезу Н0, вероятность нулевой гипотезы Н0 меньше α, а конкурирующей Н1 - больше 1 - α.

В справочной таблице приведены критерии проверки гипотез.








Date: 2015-05-08; view: 770; Нарушение авторских прав



mydocx.ru - 2015-2024 year. (0.009 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию